Builders’ Guide on MEASURING PRODUCTIVITY

A guide to help builders measure productivity of various trades
Builders’ Guide on MEASURING PRODUCTIVITY
The Building and Construction Authority (BCA) formulated the Construction Productivity Roadmap in 2010 with the aim to transform the construction industry and raise its productivity. Under the key thrust of enhancing industry awareness, BCA was tasked to establish benchmark indicators especially at project and trade levels for builders to track their own productivity performance. In order to do this, it is necessary for builders to adopt a common methodology of measuring project and trade productivity. On 15 July 2011, the submission of construction productivity data to BCA became a mandatory requirement for the builders. This was in conjunction with the enhanced buildability framework and applied to projects with Gross Floor Area (GFA) of 5000 square meters or more. The builders used a common platform under the Electronic Productivity Submission System (ePSS) to submit the construction productivity data. These data would primarily be used to establish the project level productivity.

Apart from monitoring the project productivity of building projects, it is also necessary to measure the trade productivity to have an in-depth analysis of the productivity performance in various aspects of site work. Trade productivity would reflect the efficiency and the quality of the workforce. It is particularly useful for planning and scheduling of work processes. BCA has thus produced this Builders’ Guide on Measuring Productivity. This Guide provides best practices on how to measure productivity for the 12 key trades which are commonly found in most construction projects. These best practices are illustrated through flowcharts and photographs that showed the activities involved in each trade. Productivity Monitoring Forms have also been developed for each of the key trade and builders would be able to adopt them as a common tool to measure the trade productivity.

BCA has been working closely with a group of builders in developing and using this Guide to study the trade productivity since February 2011. This Guide should come in handy to those who are unsure but want to start measuring the trade productivity in their projects. There is nothing better than learning from those that have embarked on and excelled in the same journey.

TAN TIAN CHONG
Director
Technology Development Division
Building and Construction Authority
Acknowledgement

Builders’ Guide on Measuring Productivity was developed with valuable contributions from several main contractors and their subcontractors.

We would like to express our heartfelt gratitude to the following builders for their valuable support and contributions throughout the development of this guide:

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr Allan Tan</td>
<td>Project Director</td>
<td>Dragages Singapore Pte Ltd</td>
</tr>
<tr>
<td>Mr Tnay Kwang Meng</td>
<td>Project Manager</td>
<td>Ho Lee Construction Pte Ltd</td>
</tr>
<tr>
<td>Mr Atsushi Nakagawa</td>
<td>Senior Manager</td>
<td>Obayashi Corporation</td>
</tr>
<tr>
<td>Mr Chao Shi Jie</td>
<td>Construction Manager</td>
<td>Shimizu Corporation</td>
</tr>
<tr>
<td>Mr Thomas Chiew Hock Meng</td>
<td>Executive Director</td>
<td>Singa Development Pte Ltd</td>
</tr>
<tr>
<td>Mr Hua Tai Suan, Andy</td>
<td>Project Manager</td>
<td>Singa Development Ptd Ltd</td>
</tr>
<tr>
<td>Mr Hong Wee Khong</td>
<td>Deputy Project Director</td>
<td>Teambuild Construction Pte Ltd</td>
</tr>
<tr>
<td>Mr Tan Thiam Huat</td>
<td>Project Director</td>
<td>Unison Construction Ptd Ltd</td>
</tr>
<tr>
<td>Mr Yong De-Rhong</td>
<td>Director</td>
<td>Woh Hup (Pte) Ltd</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction

1. **Formwork Installation**
 1.1 Table Formwork Installation Process
 1.1.1 Dismantling of Table Formwork
 1.1.2 Lifting of Table Formwork from Previous Floor to Upper Floor
 1.1.3 Setting Out, Alignment and Level Check
 1.1.4 Placing of Infill Form, if any
 1.2 Formwork Installation Productivity Monitoring Form

2. **Reinforcement Placing and Fixing**
 2.1 Reinforcement Placing and Fixing Process
 2.1.1 Preparation of Reinforcement
 2.1.2 Transportation of Reinforcement to Location
 2.1.3 Placing and Fixing of Reinforcement
 2.1.4 Laying and Securing of M&E Services
 2.2 Reinforcement Placing and Fixing Productivity Monitoring Form

3. **Concrete Placement**
 3.1 Concrete Placement Process
 3.1.1 Preparation of Concrete Area
 3.1.2 Transportation of Concrete to Concrete Area
 3.1.3 Placing of Concrete
 3.1.4 Spreading and Compacting of Concrete
 3.1.5 Levelling of Concrete
 3.2 Concrete Placement Productivity Monitoring Form

4. **Drywall Installation**
 4.1 Drywall Installation Process
 4.1.1 Transportation of Drywall Materials to Location
 4.1.2 Setting Out
 4.1.3 Preparation of Drywall Materials
 4.1.4 Installation of Drywall
 4.1.5 Sealing of Joints
 4.2 Drywall Installation Productivity Monitoring Form

5. **Painting**
 5.1 Painting Process
 5.1.1 Transportation of Painting Materials to Location
 5.1.2 Preparation of Painting Surface
 5.1.3 Application of Sealer Coat
 5.1.4 Application of 1st & Finishing Coat
 5.2 Painting Productivity Monitoring Form

6. **Timber Door Installation**
 6.1 Timber Door Installation Process
 6.1.1 Transportation of Door Materials to Location
 6.1.2 Setting Out
 6.1.3 Preparation of Door Frame and Panel
 6.1.4 Installation of Sub-Frame
 6.1.5 Installation of Main Frame and Door Panel
 6.1.6 Installation of Ironmongery
 6.2 Timber Door Installation Productivity Monitoring Form
7. Wall Tiling

7.1 Wall Tiling Process
 7.1.1 Transportation of Tiling Materials to Location
 7.1.2 Patching and Plastering (if necessary)
 7.1.3 Setting Out
 7.1.4 Mixing of Cement Mortar / Tile Adhesive
 7.1.5 Laying of Tiles
 7.1.6 Grouting / Pointing
 7.1.7 Cleaning of Tiles

7.2 Wall Tiling Productivity Monitoring Form

8. Floor Tiling

8.1 Floor Tiling Process
 8.1.1 Preparation of Tiling Area
 8.1.2 Transportation of Tiling Materials to Location
 8.1.3 Screeding (if necessary)
 8.1.4 Setting out
 8.1.5 Mixing of Cement Mortar / Tile Adhesive
 8.1.6 Laying of Tiles
 8.1.7 Grouting / Pointing
 8.1.8 Cleaning of Tiles

8.2 Floor Tiling Productivity Monitoring Form

9. Suspended Ceiling Installation

9.1 Suspended Ceiling Installation Process
 9.1.1 Transportation of Ceiling Materials to Location
 9.1.2 Setting Out
 9.1.3 Installation of Framework
 9.1.4 Installation of Ceiling Panel

9.2 Suspended Ceiling Installation Productivity Monitoring Form

10. Air-Con Ducting Installation

10.1 Air-Con Ducting Installation Process
 10.1.1 Transportation of Ducting Materials to Location
 10.1.2 Folding and Forming of Ductwork
 10.1.3 Setting Out
 10.1.4 Installation of Ducting
 10.1.5 Installation of Insulation

10.2 Air-Con Ducting Installation Productivity Monitoring Form

11. Electrical Conduit Installation

11.1 Electrical Conduit Installation Process
 11.1.1 Transportation of Conduit Materials to Location
 11.1.2 Setting Out
 11.1.3 Preparation of Materials
 11.1.4 Installation of Electrical Conduits

11.2 Electrical Conduit Installation Productivity Monitoring Form

12. Water Pipe Installation

12.1 Water Pipe Installation Process
 12.1.1 Transportation of Piping Materials to Location
 12.1.2 Setting Out
 12.1.3 Preparation of Water Pipe
 12.1.4 Installation of Water Pipe

12.2 Water Pipe Installation Productivity Monitoring Form

References
Introduction

The measurement of trade productivity provides the builders a platform to carry out in-depth analysis of their productivity performance. At the trade level, the amount of physical output per manhour is measured. A worker is deemed to be more productive if he produces more output within an hour. The indicator is calculated as follows:

\[
\text{Trade Productivity} = \frac{\text{Total units of output}}{\text{Total manhours (hr)}}
\]

The unit of measurement for trade productivity would vary for different trades. For example the unit of measurement for formwork installation is area of formwork installed (m²) / manhour while the unit of measurement for electrical conduit installation is length of conduit installed (m) / manhour.

This guidebook sets out the best practices on how to measure the productivity for the 12 key trades which are commonly found in most construction projects. The Productivity Monitoring Forms that have been developed for each of the key trades gave the activities and parameters that the builders should monitor and measure. Through these forms, the builders would be able to adopt a common platform to measure the trade productivity. To complement the forms, the activities involved in each trade are illustrated through flowcharts and photographs.

All the best practices in this guidebook have been gathered from the builders that have participated in the Productivity Improvement Project (PIP) on Trade & Project Level Productivity Study. References have also been made to international standards, e.g. the ASTM E2691–Practice for Job Productivity Measurements. It is a useful guide for builders who wish to measure the trade productivity in their projects.
The flowchart below shows the typical processes involved in the installation of table formwork during construction. The sequence for other system formwork will differ. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Dismantling of Table Formwork

2. Lifting of Table Formwork from Previous Floor to Upper Floor

3. Setting Out, Alignment and Level Check

4. Placing of Infill Form, if any
1.1 Table Formwork Installation Process

The following sections show the steps involved when installing table formwork. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

1.1.1 Dismantling of Table Formwork

Dismantling of table formwork include striking of infill forms, lowering down and shifting of formwork out of building.
1.1.2 Lifting of Table Formwork from Previous Floor to Upper Floor

Lifting of table formwork by crane to the floor above.

1.1.3 Setting Out, Alignment and Level Check

Checking and adjusting the position of table formwork

Positioning the table formwork
1.1.4 Placing of Infill Form, if any

Checking and adjusting the level of the table formwork

Placing of infill panel
The Formwork Installation Productivity Monitoring Form has been designed to standardize the monitoring of productivity for formwork installation. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the formwork installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the installation has reached the stage of a typical floor. The example shows the monitoring on 25th Storey, Zone 1 of Block 123.

2) The following should then be calculated or recorded:
 a) Area of horizontal formwork used on that floor
 b) Manpower used during the installation of the formwork; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. tower crane. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 11.11 manhours were required to install formwork of an area of 25m2. This is equivalent to 7 men working for approximately 1.6 hours to install 25m2 of the formwork.

4) The trade productivity is then calculated by dividing the area of formwork by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A tower crane was used in the example.
 b) Floor to floor height
 c) Breakdown of the manpower type. The example shows a trade gang of 4 men, 1 tower crane operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Dismantling of formwork
 b) Lifting of table formwork from previous floor to upper floor
 c) Setting out, alignment & level checks
 d) Placing of infill form, if any.

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the tower crane should be excluded from the manhours taken.

Case Example

Project Information

- **Location** = 25th Storey, Zone 1 of Block 123
- **Area of table formwork for each typical floor at zone 1** = 25m2
- **Floor to floor height** = 3200mm

Manpower Size

- **Trade manpower** = 4 men
- **Tower crane operator** = 1 man
- **Safety and Health workers** = 1 safety supervisor, 1 rigger/signaller

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dismantling of formwork</td>
<td>2.22</td>
</tr>
<tr>
<td>Lifting of formwork from previous floor to upper floor (Tower crane in operation)</td>
<td>3.33</td>
</tr>
<tr>
<td>(Tower crane downtime)</td>
<td>(0.50) (excluded)</td>
</tr>
<tr>
<td>Setting out, alignment & level checks</td>
<td>2.78</td>
</tr>
<tr>
<td>Placing of infill form, if any.</td>
<td>2.78</td>
</tr>
<tr>
<td>Total</td>
<td>11.11</td>
</tr>
</tbody>
</table>

Productivity Calculation

\[
\text{Trade Productivity} = \frac{\text{Formwork area}}{\text{Total manhours}} = \frac{25\text{m}^2}{11.11 \text{ manhours}} = 2.25 \text{ m}^2/\text{manhour}
\]
Formwork Productivity Monitoring Form

Project Title:

<table>
<thead>
<tr>
<th>S/No</th>
<th>Location</th>
<th>Area of Formwork (m²)</th>
<th>Total Manhour Taken (manhour)</th>
<th>Trade Productivity (m²/manhour)</th>
<th>Mechanical and Non-mechanical equipment used (if any)</th>
<th>Floor to Floor Height</th>
<th>Breakdown of Manpower Size</th>
<th>Please indicate the % of time taken in each activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trade³</td>
<td>Machine Operator²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 men</td>
<td>1 man</td>
</tr>
<tr>
<td>E.g.¹</td>
<td>Blk 123 25th Sty (Zone1)</td>
<td>25</td>
<td>11.11</td>
<td>2.25</td>
<td>1 x Tower Crane</td>
<td>3200mm</td>
<td>4 men</td>
<td>1 man</td>
</tr>
</tbody>
</table>

Percentage of time taken for Activities 1 to 4 MUST add up to 100%.

Remark:

Notes:

1. The area of the formwork is based on the total plan area of the formwork.
2. The manhours taken do not include hours clocked by the site management team.
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower. Such worker should be recorded under the Trade manpower.
6. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting Out, Alignment & Level Checks”.
8. The trade productivity value shown in the example is not meant for benchmarking purpose.

Recorded By: ____________________

Checked By: ______________________

Date: __________________________

Date: _________________________
The flowchart below shows the typical processes involved in the installation of reinforcement during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Preparation of Reinforcement
2. Transportation of Reinforcement to Location
3. Placing and Fixing of Reinforcement
4. Laying and Securing of M&E Services
2.1 Reinforcement Placing And Fixing Process

The following sections show the steps involved when placing and fixing re-bars. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

2.1.1 Preparation of Reinforcement

Transportation of reinforcement to location refer to transporting from the holding area on-site to the working area.

2.1.2 Transportation of Reinforcement to Location

Transporting of prefabricated mesh to working area

Bending of re-bars to required shape using bar bending machine

Cutting of re-bars to required length

Transporting of re-bars to working area
2.1.3 Placing and Fixing of Reinforcement

- Placing of concrete spacer
- Sorting of re-bars to ensure the correct size and quantity are in order
- Fixing of re-bars using hand tool
- Fixing of re-bars using mechanical means
2.1.4 Laying and Securing of M&E Services

Securing of conduits to re-bars

Fixing of top reinforcements and securing of conduits to ensure they are firmly in position before concreting

Securing of conduits junction box
Methodology

1) The location where the reinforcement placing and fixing would be monitored should first be identified. It is recommended for the builder to start the monitoring when the placing and fixing has reached the stage of a typical floor. The example shows the monitoring on 5th Storey, Zone 2 of Block 123.

2) The following should then be calculated or recorded:
 a) Amount of reinforcement used.
 b) Amount of prefab mesh used.
 c) Manpower used during the placing and fixing of reinforcement; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g., tower crane. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour.
 a) The example shows that about 3.13 manhours were required to place and fix reinforcement of 250kg. This is equivalent to 6 men working for approximately 0.52 manhours to place and fix 250kg of the reinforcement.
 b) The example also shows that 1.79 manhours was required to place and fix the prefab mesh of 250kg. This is equivalent to 6 men working for approximately 0.30 hours to place and fix 250kg of the prefab mesh.

4) The trade productivity is then calculated by dividing the amount of reinforcement by the manhours taken.

5) The following information should be provided in the form:
 Reinforcement
 a) Type of equipment used. A tower crane was used in the example.
 b) Breakdown of the manpower type. The example shows a trade gang of 3 men, 1 tower crane operator, 1 safety supervisor and 1 rigger/signaller.

 Prefab mesh
 a) Type of equipment used. A tower crane was used in the example.
 b) Breakdown of the manpower type. The example shows a trade gang of 3 men, 1 tower crane operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Preparation of reinforcement
 b) Transportation of reinforcement to location
 c) Placing and fixing of reinforcement
 d) Laying and securing of M&E services

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the tower crane should be excluded from the manhours taken.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:-
- Location = 5th Storey, Zone 2 of Block 123
- Amount of reinforcement laid = 250kg
- Amount of prefab mesh laid = 250kg

Manpower Size
Trade manpower = 3men (for rebar), 3men (for prefab mesh)
Tower crane operator = 1man (for both)
Safety and Health workers = 1 safety supervisor (for both), 1 rigger/signaller (for both)

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rebar (Manhours)</th>
<th>Prefab Mesh (Manhours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of reinforcement</td>
<td>0.63</td>
<td>0</td>
</tr>
<tr>
<td>Transportation of reinforcement to location</td>
<td>0.31</td>
<td>0.72</td>
</tr>
<tr>
<td>Tower crane in operation</td>
<td>(0.50)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Tower crane downtime (excluded)</td>
<td>1.72</td>
<td>0.81</td>
</tr>
<tr>
<td>Placing and fixing of reinforcement</td>
<td>3.13</td>
<td>1.79</td>
</tr>
<tr>
<td>Laying and securing of M&E services</td>
<td>0.47</td>
<td>0.26</td>
</tr>
<tr>
<td>Total</td>
<td>3.13</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Productivity Calculation

<table>
<thead>
<tr>
<th>Amt of rebar</th>
<th>Amt of mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kg</td>
<td>250 kg</td>
</tr>
<tr>
<td>3.13 manhours</td>
<td>1.79 manhours</td>
</tr>
<tr>
<td>80 kg/manhour</td>
<td>140 kg/manhour</td>
</tr>
</tbody>
</table>
Reinforcement Placing And Fixing Productivity Monitoring Form

Project Title:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Amt of Rebar (Kg) (rebar)</th>
<th>Manhour Taken</th>
<th>Trade Productivity Kg/manhour</th>
<th>Mechanical and Non-mechanical equipment used (if any)</th>
<th>Breakdown of Manpower Size</th>
<th>Please indicate the % of time taken in each activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rebar</td>
<td>E.g. 7</td>
<td>250</td>
<td>3.13</td>
<td>80kg/manhour</td>
<td>1 x Tower Crane</td>
<td>3 men</td>
<td>1 man</td>
</tr>
<tr>
<td></td>
<td>Bk 123 5th Sty Zone 2</td>
<td>250</td>
<td>1.79</td>
<td>140kg/manhour</td>
<td>1 x Tower Crane</td>
<td>3 men</td>
<td>1 man</td>
</tr>
</tbody>
</table>

\(\text{Percentage of time taken for Activities 1 to 4 MUST add up to 100\%} \)

Notes:
1. The manhours taken do not include hours clocked by the site management team.
2. Reinforcement bar and mesh shall be measured in Kg.
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
6. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
7. The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the key processes involved in the placement of concrete during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Preparation of Concreting Area
2. Transportation of Concrete to Concreting Area
3. Placing of Concrete
4. Spreading and Compacting of Concrete
5. Levelling of Concrete
3.1 Concrete Placement Process

The following sections show the steps involved when carrying out concrete placement. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

3.1.1 Preparation of Concreting Area

Area preparation for concrete placement include the clearing of debris, cleaning of formwork, preparation of concreting equipment and tools.

3.1.2 Transportation of Concrete to Concreting Area

Concrete could be transported to the concreting area via concrete bucket, truck-mounted concrete pump, rotary distributor or concrete placing boom.
3.1.3 Placing of Concrete

- Concrete Placing boom
- Rotary distributor for concreting work
- Placing of concrete using concreting bucket
- Placing of concrete using pump
3.1.4 Spreading and Compacting of Concrete

Spreading and compacting of concrete could be done using the shovels or the vibrators.

3.1.5 Levelling of Concrete

Levelling of wet concrete could be done using the trowel or the vibrating screed levellers.
The Concrete Placement Productivity Monitoring Form has been designed to standardize the monitoring of productivity for concrete placement. The methodology gives the step-by-step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the concrete placement would be monitored should first be identified. It is recommended for the builder to start the monitoring when the concrete placement has reached the stage of a typical floor. The example shows the monitoring on 6th Storey, Zone 3 of Block 123.

2) The following should then be calculated or recorded:
 a) Volume of concrete
 b) Manpower used during the concrete placement; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. tower crane. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 16.26 manhours were required to place concrete of 20m³. This is equivalent to 8 men working for approximately 2 hours to place concrete of 20m³.

4) The trade productivity is then calculated by dividing the volume of concrete placed by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A crane and bucket was used in the example.
 b) Breakdown of the manpower type. The example shows a trade gang of 5 men, 1 tower crane operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Preparation of concreting area
 b) Transportation of concrete to location
 c) Placing of concrete
 d) Spreading of concrete
 e) Compacting of concrete
 f) Leveling of concrete

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the tower crane should be excluded from the manhours taken.

Case Example

Project Information

This project consists of 3 blocks of residential buildings:
- Location = 6th Storey, Zone 3 of Block 123
- Concrete Volume = 20m³

Manpower Size

Trade manpower = 5men
Tower crane operator = 1man
Safety and Health workers = 1 safety supervisor, 1 rigger/signaller

Time taken

- Preparation of concreting area: 1.62 manhours
- Transportation of concrete to location: 2.44 manhours (Tower crane in operation)
 (Excluded) (0.50 manhours)
- Placing of concrete: 4.06 manhours
- Spreading of concrete: 4.88 manhours
- Compacting of concrete: 1.63 manhours
- Leveling of concrete: 1.63 manhours
- Total: 16.26 manhours

Productivity Calculation

Trade Productivity = \[
\frac{\text{Volume of concrete}}{\text{Total manhours}} = \frac{20m^3}{16.26 \text{ manhours}}
\]

= \[1.23m^3/\text{manhour}\]
Concrete Placement Productivity Monitoring Form

Project Title:

[Title field]

Breakdown of Manpower Size

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Concrete Volume (m³)</th>
<th>Total Manhour Taken (m³/manhour)</th>
<th>Trade Productivity (m³/manhour)</th>
<th>Casting Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical and Non-Mechanical Concreting Equipment used (if any):

- **Mechanical:** Crane & Bucket, Truck-Mounted Concrete Pump, Concreting Placing Boom, etc.
- **Non Mechanical:** Wheelbarrow, etc.

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Concrete Volume (m³)</th>
<th>Total Manhour Taken (m³/manhour)</th>
<th>Trade Productivity (m³/manhour)</th>
<th>Safety and Health</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparation of Concreting Area:

10%

Transportation of Concrete to Location:

15%

Placing of Concrete:

25%

Spreading of Concrete:

30%

Compacting of Concrete:

10%

Levelling of Concrete:

10%

E.g.:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Concrete Volume (m³)</th>
<th>Total Manhour Taken (m³/manhour)</th>
<th>Trade Productivity (m³/manhour)</th>
<th>Safety and Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blk 123</td>
<td>20</td>
<td>1.23</td>
<td>5 men</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6th</td>
<td></td>
<td></td>
<td>1 man</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zone 3</td>
<td></td>
<td></td>
<td>2 men</td>
<td></td>
</tr>
</tbody>
</table>

Percentage of time taken for Activities 1 to 6 MUST add up to 100%.

Remark:

- Recorded By: ____________________ Checked By: ____________________
- Date: __________________________ Date: _______________________

Notes:

1. Self-compacting concrete shall be highlighted under the remark section.
2. The manhours taken do not include hours clocked by the site management team.
3. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
4. The trade manpower size refers to the gang size only.
5. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
6. The safety and health manpower size refers safety supervisor, rigger/signaller and housekeeping worker.
7. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Preparation of Concreting Area”.
8. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
9. The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the typical processes involved in the installation of drywall during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Transportation of Drywall Materials to Location
2. Setting Out
3. Preparation of Drywall Materials
4. Installation of Drywall
5. Sealing of Joints
4.1 Drywall Installation Process

The following sections show the steps involved when installing drywall partition. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

4.1.1 Transportation of Drywall Materials to Location

Transportation of drywall materials to location refer to transporting from the holding area on-site to the working area.

4.1.2 Setting Out

Setting out of drywall installation includes marking of wall position on floor, wall and ceiling.
4.1.3 Preparation of Drywall Materials

Preparation of drywall materials includes cutting of metal studs to required length and cutting of gypsum boards to actual size and shape.

4.1.4 Installation of Drywall

The drywall system can be easily installed and quickly relocated according to one’s needs. Homeowners can renovate and redesign the interior layouts within a short time. Below is the typical drywall installation process.
4.1.5 Sealing of Joints

Installing insulation between panel (M&E work is excluded from the drywall trade.)

Sealing up the joint between plasterboard (Painting of wall is excluded from the drywall trade.)
4.2 Drywall Installation Productivity Monitoring Form

The Drywall Installation Productivity Monitoring Form has been designed to standardize the monitoring of productivity for drywall installation. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the drywall installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the drywall installation has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Living Room.

2) The following should then be calculated or recorded:
 a) Area and height of drywall installed
 b) Manpower used during the drywall installation; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. tower crane. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 6.67 manhours were required to install a drywall of 15m². This is equivalent to 7 men working for approximately 0.95 hours to install a drywall of 15m².

4) The trade productivity is then calculated by dividing the area of drywall installed by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A tower crane was used in the example.
 b) Breakdown of the manpower type. The example shows a trade gang of 4 men, 1 tower crane operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transportation of drywall materials to location
 b) Setting out
 c) Preparation of drywall materials
 d) Installation of drywall
 e) Sealing of joints

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the tower crane should be excluded from the manhours taken.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:
- Location = Block 123 #05-13 Living Room
- Area of drywall = 15m²
- Room height = 3m

Manpower Size
Trade manpower = 4 men
Tower crane operator = 1 man
Safety and Health workers = 1 safety supervisor, 1 rigger/signaller

Time taken
<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation of drywall materials to location (Tower crane in operation)</td>
<td>0.67</td>
</tr>
<tr>
<td>Transportation of drywall materials to location (Tower crane downtime)</td>
<td>(0.50 excluded)</td>
</tr>
<tr>
<td>Setting out</td>
<td>1.00</td>
</tr>
<tr>
<td>Preparation of drywall materials</td>
<td>1.33</td>
</tr>
<tr>
<td>Installation of drywall</td>
<td>2.67</td>
</tr>
<tr>
<td>Sealing of joints</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>6.67</td>
</tr>
</tbody>
</table>

Trade Productivity = \(\frac{\text{Area of drywall}}{\text{Total manhours}} \) = \(\frac{15m^2}{6.67 \text{ manhours}} \) = 2.25m²/manhour
Drywall Installation Productivity Monitoring Form

Project Title:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Height (m)</th>
<th>Area (m²)</th>
<th>Total Manhour Taken*</th>
<th>Trade Productivity (m³/manhour)</th>
<th>Mechanical and Non-mechanical equipment used (if any)</th>
<th>Thickness / Width of Partition Board</th>
<th>Breakdown of Manpower Size</th>
<th>Please indicate the % of time taken in each activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trade⁴</td>
<td>Mechanical Operator⁵</td>
<td>Safety and Health⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 men</td>
<td>1 man</td>
<td>2 men</td>
</tr>
<tr>
<td>1</td>
<td>E.g.¹</td>
<td>Blk 123</td>
<td>3m high</td>
<td>6.67</td>
<td>2.25</td>
<td>1 X Tower Crane</td>
<td>12mm thk/1200mm wide</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>#05-13</td>
<td>Living Room</td>
<td>15m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percentage of time taken for Activities 1 to 5 MUST add up to 100 %.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The areas of drywall is calculated based on length of the drywall (centreline) multiply by the height of the wall.
2. The manhours taken do not include hours clocked by the site management team.
3. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
4. The trade manpower size refers to the gang size only.
5. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
6. Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
7. The safety and health manpower size refers safety supervisor, rigger/signaller and housekeeping worker.
8. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
9. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting Out”.
10. Painting work and other finishing works shall not be included.
11. The trade productivity value shown in the example is not meant for benchmarking purpose.

Remark:

Recorded By: ____________________ **Checked By:** ____________________
Date: __________________________ **Date:** _______________________

Notes:
1) The areas of drywall is calculated based on length of the drywall (centreline) multiply by the height of the wall.
2) The manhours taken do not include hours clocked by the site management team.
3) Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
4) The trade manpower size refers to the gang size only.
5) The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
6) Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
7) The safety and health manpower size refers safety supervisor, rigger/signaller and housekeeping worker.
8) The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
9) The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting Out”.
10) Painting work and other finishing works shall not be included.
11) The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the typical processes involved in painting during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Transportation of Painting Materials to Location
2. Preparation of Painting Surface
3. Application of Sealer Coat
4. Application of 1st Coat and finishing coat
5.1 Painting Process

The following sections show the steps involved during a painting process. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

5.1.1 Transportation of Painting Materials to Location

Transportation of painting materials to location refer to transporting from the holding area on-site to the working area.

5.1.2 Preparation of Painting Surface

Cleaning to remove foreign and unstable matter

Protecting surfaces that are not intended to be painted.

Transporting of painting materials to working area

Placing of paint near working area
5.1.3 Application of Sealer Coat

There are various methods of application such as the brush, roller, and spray painting. The adoption of each method will depend mainly on the working area and site situation.

- Setting up of spray painting equipment
- Mixing of paint manually
- Application of sealer coat by spray
- Application of sealer coat by roller
5.1.4 Application of 1st & Finishing Coat

- Painting to edges using brush
- Application of 1st and finishing coat using roller or spray
- Intercoat preparation such as light sanding with fine-grade, preferably partly worn sandpaper can be used to remove nibs and adherent dust particles
5.2 Painting Productivity Monitoring Form

The Painting Productivity Monitoring Form has been designed to standardize the monitoring of productivity for painting work. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the painting work would be monitored should first be identified. It is recommended for the builder to start the monitoring when the painting work has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Living Room.

2) The following should then be calculated or recorded:
 a) Painted area
 b) Manpower used during the painting work; this should include the trade gang and safety & health worker. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 4.55 manhours were required to paint an area of 25m2 using roller methods. This is equivalent to 3 men working for approximately 1.52 hours to paint an area of 25m2.

4) The trade productivity is then calculated by dividing the painted area by the manhours taken.

5) The following information should be provided in the form:
 a) Method of application
 b) Type of equipment used. A materials hoist was used in the example.
 c) Breakdown of the manpower type. The example shows 1 painter, 1 material hoist and 1 general worker.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transportation of paint materials to location
 b) Preparation of painting surface
 c) Application of sealer coat
 d) Application of 1st coat
 e) Application of finishing coat
 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the material hoist should be excluded from the manhours.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:-
- Location = Block 123 #05-13 Living Room
- Area to be painted = 25m2
- Room height = 2.9m

Manpower Size
Trade manpower = 1 man
Material hoist operator = 1 man
Safety and Health workers = 1 general worker

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation of painting materials to location</td>
<td>0.80</td>
</tr>
<tr>
<td>(Material hoist in operation)</td>
<td></td>
</tr>
<tr>
<td>(Material hoist downtime)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Preparation of painting surface</td>
<td>1.41</td>
</tr>
<tr>
<td>Application of sealer coat</td>
<td>0.78</td>
</tr>
<tr>
<td>Application of 1st coat</td>
<td>0.78</td>
</tr>
<tr>
<td>Application of finishing coat</td>
<td>0.78</td>
</tr>
<tr>
<td>Total</td>
<td>4.55</td>
</tr>
</tbody>
</table>

Productivity Calculation

Trade Productivity = \[
\frac{\text{Total painted area}}{\text{Total manhours}} = \frac{25 \text{ m}^2}{4.55 \text{ manhours}} = 5.50 \text{ m}^2/\text{manhour}
\]
Painting Productivity Monitoring Form

Project Title:

__

Breakdown of Manpower Size

Please indicate the % of time taken in each activities

<table>
<thead>
<tr>
<th>S/no</th>
<th>Area</th>
<th>Trade Productivity</th>
<th>Method of Application</th>
<th>Room Height (mm)</th>
<th>Painted Surface</th>
<th>Trade Manpower Size</th>
<th>Machine Operator</th>
<th>Safety and Health</th>
<th>Transporting Paint Materials to Location</th>
<th>Preparation of Painting Surface</th>
<th>Application of 1st Coat</th>
<th>Application of Finishing Coat</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g.</td>
<td>Blk 123 #05-13 Living Room</td>
<td>25</td>
<td>4.55</td>
<td>5.50</td>
<td>Roller</td>
<td>2900</td>
<td>Wall</td>
<td>1 man</td>
<td>1 man</td>
<td>1 man</td>
<td>16%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Percentage of time taken for Activities 1 to 5 MUST add up to 100 %.

Notes:

1. The manhours taken do not include hours clocked by the site management team.
2. Drying time between coats shall not be recorded.
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
6. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
7. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Preparation of Painting Surface”.
8. The trade productivity value shown in the example is not meant for benchmarking purpose.

Recorded By: ________________________ Checked By: _______________________

Date: __________________________ Date: _______________________
TIMBER DOOR INSTALLATION

The flowchart below shows the typical processes involved in the installation of timber door during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Transportation of Door Materials to Location
2. Setting Out
3. Preparation of Door Frame and Panel
4. Installation of Sub-frame
5. Installation of Main frame and Door Panel
6. Installation of Ironmongery
6.1 Timber Door Installation Process

The following sections show the steps involved when installing timber door. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

6.1.1 Transportation of Door Materials to Location

Transportation of door materials include bringing the door frame, door panel and all ironmongery from the holding area on-site to the working area.

6.1.2 Setting Out

Confirming the door location against the approved shop drawing. Verify that the dimensions of the opening are as specified in the drawing.
6.1.3 Preparation of Door Frame and Panel

- Assembling the pre-cut main frame using finish nails or screws if the frame is not pre-assembled at the factory.

6.1.4 Installation of Sub-Frame

- Verify the dimensions of the sub-frame opening.

- Installing of sub-frame.
6.1.5 Installation of Main Frame and Door Panel

Installing of main frame

Installing of door panel

6.1.6 Installation of Ironmongery

Installing ironmongery to the door panel

Installing the architrave around door frame (if any)

Note: All manhours taken for the finishing work such as painting, vanishing, etc. should not be taken into account.
6.2 Timber Door Productivity Monitoring Form

The Timber Door Productivity Monitoring Form has been designed to standardize the monitoring of productivity for timber door. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the door installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the door installation has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 living room.

2) The following should then be calculated or recorded:
 a) Number of door installed
 b) Manpower used during the door installation; this should include the trade gang and safety & health worker. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 16.14 manhours were required to install 5 number of timber door. This is equivalent to 3 men working for approximately 5.38 hours to install 5 number of timber door.

4) The trade productivity is then calculated by dividing the number of door installed by the manhours taken.

5) The following information should be provided in the form:
 a) Method of application
 b) Type of equipment used. A materials hoist was used in the example.
 c) Breakdown of the manpower type. The example shows 1 tradesman, 1 material hoist and 1 general worker.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transportation of door materials to location
 b) Setting out
 c) Preparation of door frame and door
 d) Installation of sub frame
 e) Installation of door frame and door panel
 f) Installation of ironmongery

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the material hoist should be excluded from the manhours.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:
- Location = Block 123 #05-13 Living Room
- Number of door installed = 5

Manpower Size
Trade manpower = 1man
Material hoist operator=1man
Safety and Health workers = 1 general worker

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation of door materials</td>
<td>0.81</td>
</tr>
<tr>
<td>Preparing and transportation</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Setting out</td>
<td>1.61</td>
</tr>
<tr>
<td>Preparation of door frame and</td>
<td>1.61</td>
</tr>
<tr>
<td>Installation of sub frame</td>
<td>2.42</td>
</tr>
<tr>
<td>Installation of door panel</td>
<td>6.46</td>
</tr>
<tr>
<td>Installation of ironmongery</td>
<td>3.23</td>
</tr>
<tr>
<td>Total</td>
<td>16.14</td>
</tr>
</tbody>
</table>

Productivity Calculation

Trade Productivity = \[
\frac{\text{Number of doors installed}}{\text{Total manhours}}
\]

\[
= \frac{5 \text{ num}}{16.14 \text{ manhours}}
\]

\[
= 0.31 \text{ num/manhour}
\]
Timber Door Productivity Monitoring Form

(Swing Door Only)

Project Title:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Num of Door Installed</th>
<th>Total Manhour Taken</th>
<th>Trade Productivity (num/manhour)</th>
<th>Mechanical and Non-mechanical equipment used (if any)</th>
<th>Door Size</th>
<th>Breakdown of Manpower Size</th>
<th>Please indicate the % of time taken in each activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mechanical: Boom/Scissor/Personnel Lifts, etc.; Non Mechanical: Scaffold/Ladder/Bench, etc.</td>
<td>900 x 2200</td>
<td>Trade²</td>
<td>Machine Operator³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 man</td>
<td>1 man</td>
</tr>
</tbody>
</table>

E.g.

					Mechanical and Non-mechanical equipment used (if any)	Door Size	Breakdown of Manpower Size	Please indicate the % of time taken in each activities							
					Mechanical: Boom/Scissor/Personnel Lifts, etc.; Non Mechanical: Scaffold/Ladder/Bench, etc.	900 x 2200	Trade²	Machine Operator³	Safety and Health⁵	Transportation of Materials to Location¹	Setting Out	Preparation of Door Frame and Door	Installation of Sub-Frame	Installation of Door Frame and Door Panel⁶	Installation of Ironmongery
							1 man	1 man	1 man	5%	10%	10%	15%	20%	20%

Remark:

Notes:

1) The manhours taken do not include hours clocked by the site management team.
2) Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3) Finishing works such as painting and varnishing shall not be included.
4) The trade manpower size refers to the gang size only.
5) The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
6) The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7) The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
8) The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Installation of Main Frame and Door Panel”.
9) The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the typical processes involved in the tiling of wall during construction. It serves as a guide on the activities that are to be considered during measurement of productivity for this trade.

1. Transportation of Tiling Materials to Location
2. Patching and Plastering (if necessary)
3. Setting Out
4. Mixing of Cement Mortar/Tile Adhesive
5. Laying of Tiles
6. Grouting / Pointing
7. Cleaning of Tiles
7.1 Wall Tiling Process

The following sections show the steps involved when laying wall tiles. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

7.1.1 Transportation of Tiling Materials to Location

Transportation of tiling materials to location refer to transporting from the holding area on-site to the working area.

7.1.2 Patching and Plastering (if necessary)

Patching up all concealed conduits, unwanted recesses and openings.
7.1.3 Setting Out

Setting out the position of the tiles and marking of reference line for tile laying

7.1.4 Mixing of Cement Mortar / Tile Adhesive

Mixing the tiling adhesive in accordance to the manufacturer’s instruction menu

Mixing of cement mortar
7.1.5 Laying of Tiles

- Cutting of tiles to required size
- Placing of tile to wall surface with reference to the marked line and tapping tile into position

7.1.6 Grouting / Pointing

- Spreading grout with a soft trowel

7.1.7 Cleaning of Tiles

- Cleaning of tiles with damp cloth or sponge
Wall Tiling Productivity Monitoring Form

The Wall Tiling Productivity Monitoring Form has been designed to standardize the monitoring of productivity for wall tiling. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the wall tiling would be monitored should first be identified. It is recommended for the builder to start the monitoring when the wall tiling has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Toilets.

2) The following should then be calculated or recorded:
 a) Tiled area
 b) Tile size
 c) Manpower used during the wall tiling; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. material hoist. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 12.82 manhours were required to tile an area of 25m2. This is equivalent to 5 men working for approximately 2.56 hours to tile an area of 25m2.

4) The trade productivity is then calculated by dividing the tiled area by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A materials hoist was used in the example.
 b) Breakdown of the manpower type. The example shows 2 tradesmen, 1 material hoist operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transportation of materials to location
 b) Patching and plastering (if any)
 c) Setting out
 d) Mixing of tile adhesive
 e) Laying of tiles
 f) Grouting / Pointing
 g) Cleaning of tiles

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the material hoist should be excluded from the manhours taken.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:-
- Location = Block 123 #05-13 Toilets
- Tiled Area = 25m2

Manpower Size
Trade manpower = 2men
Material hoist operator = 1man
Safety and Health workers = 1 safety supervisor, 1 rigger/signaller

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time (manhours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation of tiling materials to location (Material hoist in operation)</td>
<td>0.80</td>
</tr>
<tr>
<td>(Material hoist downtime)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Patching and plastering (if any)</td>
<td>1.08</td>
</tr>
<tr>
<td>Setting out</td>
<td>1.62</td>
</tr>
<tr>
<td>Mixing of tile adhesive</td>
<td>0.54</td>
</tr>
<tr>
<td>Laying of tiles</td>
<td>7.16</td>
</tr>
<tr>
<td>Grouting/Pointing</td>
<td>1.08</td>
</tr>
<tr>
<td>Cleaning of Tiles</td>
<td>0.54</td>
</tr>
<tr>
<td>Total</td>
<td>12.82</td>
</tr>
</tbody>
</table>

Productivity Calculation

Trade Productivity = \[\frac{\text{Tiled area}}{\text{Total manhours}} \]

= \[\frac{25 \text{ m}^2}{12.82 \text{ manhours}} \]

= 1.95m2/manhour
Wall Tiling Productivity Monitoring Form

Project Title:
__

Breakdown of Manpower Size

Please indicate the % of time taken in each activity:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Tiled Area (m²)</th>
<th>Manhour Taken</th>
<th>Trade Productivity (m²/manhour)</th>
<th>Mechanical and Non-Mechanical Concreting Equipment used (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S/no</th>
<th>Tile Size (mm)</th>
<th>Trade Manpower Size</th>
<th>Machine Operator Manpower Size</th>
<th>Safety and Health Manpower Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.g.

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Tiled Area (m²)</th>
<th>Manhour Taken</th>
<th>Trade Productivity (m²/manhour)</th>
<th>Mechanical and Non-Mechanical Concreting Equipment used (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bk 123 #05-13 Toilets</td>
<td>25</td>
<td>12.82</td>
<td>1.95</td>
<td>1 x Material Hoist 1 x Wheelbarrow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S/no</th>
<th>Transportation of Materials to Location</th>
<th>Patching and Plastering (if any)</th>
<th>Setting Out</th>
<th>Mixing of Cement/Mortar/Tile Adhesive</th>
<th>Laying of Tiles</th>
<th>Grouting/Pointing</th>
<th>Cleaning of Tiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The manhours taken do not include hours clocked by the site management team.
2. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
6. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
8. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting out”.
9. The trade productivity value shown in the example is not meant for benchmarking purpose.

Percentage of time taken for Activities 1 to 7 MUST add up to 100%.

Remark:

Recorded By: ________________________ Checked By: _______________________
Date: __________________________ Date: _______________________

Notes:

1. The manhours taken do not include hours clocked by the site management team.
2. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
6. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
8. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting out”.
9. The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the typical processes involved in the tiling of floor during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Preparation of Tiling Area
2. Transportation of Tiling Materials to Location
3. Screeding (if necessary)
4. Setting Out
5. Mixing of Cement Mortar / Tile Adhesive
6. Laying of Tiles
7. Grouting / Pointing
8. Cleaning of Tiles
8.1 Floor Tiling Process

The following sections show the steps involved when laying of floor tiles. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

8.1.1 Preparation of Tiling Area

Area preparation include cleaning and washing off dust and debris and checking the level of substrate.

- Cleaning concrete surface with broom
- Removing concrete protrusion on the tiling area
- Checking the level of the substrate
- Cleaning concrete surface using water jet
8.1.2 Transportation of Tiling Materials to Location

Transportation of tiling materials to location refer to transporting from the holding area on-site to the working area.

8.1.3 Screeding (if necessary)

Transporting tiling materials to location

Transporting tiling material using wheel-barrow

Finishing screed with wooden float
8.1.4 Setting out

Setting out tile lines on screed

8.1.5 Mixing of Cement Mortar / Tile Adhesive

Mixing the tiling adhesive in accordance to the manufacturer’s instruction menu

Mixing of cement mortar
8.1.6 Laying of Tiles

- Cutting of tile to required size
- Tapping tile onto uniform position using a rubber mallet.
- Spreading the cement mortar/tile adhesive within the reach of an arm’s length.
- Damping screed surface to reduce suction.
8.1.7 Grouting / Pointing

Removing of dust trapped between tile joint

Pointing of joint between tile with colour grout

8.1.8 Cleaning of Tiles

Cleaning of tile to remove stain or other residue
8.2 Floor Tiling Productivity Monitoring Form

The Floor Tiling Productivity Monitoring Form has been designed to standardize the monitoring of productivity for floor tiling. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the floor tiling would be monitored should first be identified. It is recommended for the builder to start the monitoring when the floor tiling has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Living Room.

2) The following should then be calculated or recorded:
 a) Tiled area
 b) Tile size
 c) Manpower used during the floor tiling: this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. material hoist. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 11.06 manhours were required to tile an area of 25m2. This is equivalent to 5 men working for approximately 2.21 hours to tile an area of 25m2.

4) The trade productivity is then calculated by dividing the tiled area by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A materials hoist was used in the example.
 b) Breakdown of the manpower type. The example shows 2 tradesmen, 1 material hoist operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Preparation of tiling area
 b) Transportation of tiling materials to location
 c) Screeding (if any)
 d) Setting out
 e) Mixing of tiles adhesive
 f) Laying of tiles
 g) Grouting / Pointing
 h) Cleaning of tiles

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the material hoist should be excluded from the manhours taken.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:
- Location = Block 123 #05-13 Living Room
- Tiled area = 25m2

Manpower Size
- Trade manpower = 2 men
- Material hoist operator = 1 man
- Safety and Health workers = 1 safety supervisor, 1 rigger/signaller

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of tiling area</td>
<td>1.08</td>
</tr>
<tr>
<td>Transportation of tiling materials to location</td>
<td>0.80</td>
</tr>
<tr>
<td>(Material Hoist in operation)</td>
<td>0.50 (excluded)</td>
</tr>
<tr>
<td>Setting out</td>
<td>1.08</td>
</tr>
<tr>
<td>Mixing of tiles adhesive</td>
<td>0.54</td>
</tr>
<tr>
<td>Laying of tiles</td>
<td>5.94</td>
</tr>
<tr>
<td>Grouting / Pointing</td>
<td>1.08</td>
</tr>
<tr>
<td>Cleaning of tiles</td>
<td>0.54</td>
</tr>
<tr>
<td>Total</td>
<td>11.06</td>
</tr>
</tbody>
</table>

Productivity Calculation

\[
\text{Trade Productivity} = \frac{\text{Tiled area}}{\text{Total manhours}} = \frac{25 \text{ m}^2}{11.06 \text{ manhours}} = 2.26 \text{ m}^2/\text{manhours}
\]
Floor Tiling Productivity Monitoring Form

Project Title:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Tile Area (m²)</th>
<th>Total Manhour Taken</th>
<th>Trade Productivity (m²/manhour)</th>
<th>Mechanical and Non-Mechanical Equipment used (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bik 123 #05-13 Living Room</td>
<td>25</td>
<td>11.06</td>
<td>2.26</td>
<td>1 x Material Hoist 1 x Wheelbarrow 300 x 300</td>
</tr>
</tbody>
</table>

Breakdown of Manpower Size

<table>
<thead>
<tr>
<th>Trade Manpower Size</th>
<th>Machine Operator Manpower Size</th>
<th>Safety and Health Manpower Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 men</td>
<td>1 man</td>
<td>2 men</td>
</tr>
</tbody>
</table>

Precautions:

1. The manhours taken do not include hours clocked by the site management team.
2. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. Mechanical equipment that do not required a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
6. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
8. The trade productivity value shown in the example is not meant for benchmarking purpose.

Remark:

Notes:

Recorded By: ________________________ **Checked By:** ________________________

Date: __________________________ **Date:** _______________________

Notes:

1) The manhours taken do not include hours clocked by the site management team.
2) Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3) The trade manpower size refers to the gang size only.
4) The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5) Mechanical equipment that do not required a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
6) The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7) The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
8) The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the typical processes involved in the installation of suspended ceiling during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Transportation of Ceiling Materials to Location
2. Setting Out
3. Installation of Framework
4. Installation of Ceiling Panel
9.1 Suspended Ceiling Installation Process

The following sections show the steps involved when installing suspended ceiling. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

9.1.1 Transportation of Ceiling Material to Location

Transportation of ceiling materials to location refer to transporting from the holding area on-site to the working area.

Transporting ceiling materials to working area

Placing of ceiling materials at working area
9.1.2 Setting Out

Determine the ceiling level

Fixing of wall angle after ceiling level is determined

9.1.3 Installation of Framework

Installing the ceiling framework. Ensure the whole framing system is firmly secured to the structural soffit

Installing the hanging system for the ceiling framework
9.1.4 Installation of Ceiling Panel

Installing plasterboard panel by fastening it to ceiling framework using screws at regular intervals.

Plastering of board joint /ceiling surface.

Filling up all screws holes with joint compound.
The Suspended Ceiling Installation Productivity Monitoring Form has been designed to standardize the monitoring of productivity for suspended ceiling installation. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and relate to the methodology before using the form.

Methodology

1) The location where the suspended ceiling installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the suspended ceiling installation has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Living Room.

2) The following should then be calculated or recorded:
 a) Area of suspended ceiling
 b) Ceiling height
 c) Manpower used during the suspended ceiling installation; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. material hoist. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 4.02 manhours were required to install a suspended ceiling of 20m². This is equivalent to 5 men working for approximately 0.80 hours to install a suspended ceiling of 20m².

4) The trade productivity is then calculated by dividing the area of suspended ceiling by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A material hoist was used in the example.
 b) Breakdown of the manpower type. The example shows 2 tradesmen, 1 material hoist operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transporting of ceiling materials to location
 b) Setting out
 c) Installation of framework
 d) Installation of ceiling panel

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the tower crane should be excluded from the manhours taken.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:
- Location = Block 123 #05-13 Living Room
- Suspended ceiling area = 20m²
- Ceiling height = 3200mm

Manpower Size
Trade manpower = 2men
Material hoist operator = 1man
Safety and Health workers = 1 safety supervisor, 1 rigger/signaller.

Time taken
- Transportation of ceiling materials to location (Material hoist in operation) 0.60 manhours
- Transportation of ceiling materials to location (Material hoist downtime) 0.50 manhours (excluded)
- Setting out 1.00 manhours
- Installation of framework 1.21 manhours
- Installation of ceiling panel 1.21 manhours
- Total 4.02 manhours

Productivity Calculation

\[
\text{Trade Productivity} = \frac{\text{Suspended ceiling area}}{\text{Total manhours}} = \frac{20 \text{ m}^2}{4.02 \text{ manhours}} = 4.98 \text{ m}^2/\text{manhours}
\]
Suspended Ceiling Installation Productivity Monitoring Form

Project Title:

Breakdown of Manpower Size

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Area Done (m²)</th>
<th>Total Manhour Taken</th>
<th>Trade Productivity (m²/manhour)</th>
<th>Ceiling Height (mm)</th>
<th>Trade¹</th>
<th>Machine Operator²</th>
<th>Safety and Health³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blk 123 #05-13 Living Room</td>
<td>20</td>
<td>4.02</td>
<td>4.98</td>
<td>1 x Material Hoist, 1 x Scissor Lift</td>
<td>3200</td>
<td>2 men</td>
<td>1 man</td>
</tr>
</tbody>
</table>

Percentage of time taken for Activities 1 to 4 MUST add up to 100 %.

Remarks:

- Recorded By: ________________________ Checked By: ________________________
- Date: __________________________ Date: ________________________

Notes:

1. The manhours taken do not include hours clocked by the site management team.
2. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator manpower.
6. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting Out”.
8. M&E services and fire protection devices that are incorporated in the ceiling shall not be included.
9. The trade productivity value shown in the example is not meant for benchmarking purpose.
The flowchart below shows the key processes involved in the ducting of air-conditioning during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Transportation of Ducting Materials to Location
2. Folding and Forming of Ductwork
3. Setting Out
4. Installation of Ducting
5. Installation of Insulation
10.1 Air-Con Ducting Installation Process

The following sections show the steps involved when carrying out air-con ducting installation. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

10.1.1 Transportation of Ducting Materials to Location

Transportation of ducting materials to location refer to transporting from the holding area on-site to the working area.

10.1.2 Folding and Forming of Ductwork

Folding and forming of ductwork include marking out, cutting, bending to shape and assembling the parts together.
10.1.3 Setting Out

Setting out include marking out the ducting route, checking the alignment and fixing of hanger supports to ceiling.
10.1.4 Installation of Ducting

Installation of ductwork after ensuring the correct size is used

10.1.5 Installation of Insulation

Application of adhesive to insulation (if necessary)
Placing of insulation to ductwork
The Air-Con Ducting Installation Productivity Monitoring Form has been designed to standardize the monitoring of productivity for air-con ducting installation. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and the methodology before using the form.

Methodology

1) The location where the air-con ducting installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the air-con ducting installation has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Living Room.

2) The following should then be calculated or recorded:
 a) Length of ducting installed
 b) Ceiling height
 c) Duct size
 d) Whether the ducting is prefabricated, pre-insulated or form and insulated on-site.
 e) Manpower used during the air-con ducting installation; this should include the trade gang, safety & health workers, machine operator that operates the lifting equipment e.g. material hoist. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 50 manhours were required to install 20m of air-con ducting. This is equivalent to 5 men working for approximately 10 hours to install 20m of air-con ducting.

4) The trade productivity is then calculated by dividing the length of ducting by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A material hoist was used in the example.
 b) Breakdown of the manpower type. The example shows 2 tradesmen, 1 material hoist operator, 1 safety supervisor and 1 rigger/signaller.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transporting of ducting materials to location
 b) Forming and folding of ducting
 c) Setting out
 d) Installing of ducting
 e) Installing of insulation

 (The form should indicate as a percentage the time taken for each of the above activities)

7) The downtime and waiting time of the material hoist should be excluded from the manhours taken.

Case Example

Project Information
This project consists of 3 blocks of residential buildings:-
- Location = Block 123 #05-13 Living Room
- Length of ducting = 20m
- Ceiling height = 3200mm

Manpower Size
Trade manpower = 2men
Material hoist operator = 1man
Safety and Health workers = 1 safety supervisor, 1 rigger/signaller.

Time taken
<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation of ducting materials to location</td>
<td>5.00</td>
</tr>
<tr>
<td>(Material hoist in operation)</td>
<td></td>
</tr>
<tr>
<td>(Material hoist downtime)</td>
<td>3.00</td>
</tr>
<tr>
<td>Forming and folding of ducting</td>
<td>9.50</td>
</tr>
<tr>
<td>Setting out</td>
<td>9.50</td>
</tr>
<tr>
<td>Installing of ducting</td>
<td>14.00</td>
</tr>
<tr>
<td>Installing of insulation</td>
<td>12.00</td>
</tr>
<tr>
<td>Total</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Productivity Calculation

\[
\text{Trade Productivity} = \frac{\text{Length of ducting}}{\text{Total manhours}}
\]

\[
= \frac{20 \text{ m}}{50 \text{ manhours}}
\]

\[
= 0.40 \text{ m/manhours}
\]
Air-Con Ducting Installation Productivity Monitoring Form

Project Title:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Duct Length (m)</th>
<th>Total Manhour Taken[^1][^2]</th>
<th>Trade Productivity (m/manhour)</th>
<th>Mechanical and Non-mechanical equipment used if any</th>
<th>Ceiling Height (mm)</th>
<th>Duct Size</th>
<th>Type of Ducting</th>
<th>Breakdown of Manpower Size</th>
<th>Please indicate the % of time taken in each activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mechanical: Boom/scissor/personnel lifts, etc.</td>
<td>3200</td>
<td>450 x 200</td>
<td>On-site forming and insulated</td>
<td>2 men</td>
<td>1 man</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non Mechanical: Scaffold/ladder/bench, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Remark:

Notes:

1. The manhours taken do not include hours clocked by the site management team.
2. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refer to operators of lifting equipment, transportation equipment and temporary hoist.
5. Mechanical equipment that do not require a designated operator, for example scissor lift shall not be recorded under Machine Operator Manpower.
6. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
7. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhour taken for the specific trade.
8. The manhours taken for the erection/dismantling of scaffold, if any, shall be recorded under the activities ‘Setting Out’.
9. The trade productivity value shown in the example is not meant for benchmarking purpose.

[^1]: E.g., Blk 123 #05-13 Living Room
[^2]: 20m
[^3]: 50
[^4]: 0.40
[^5]: 1 x Material Hoist
[^6]: 1 x Scissor Lift
[^7]: On-site forming and insulated
[^8]: 2 men
[^9]: 1 man
[^10]: 2 men
[^11]: 10%
[^12]: 19%
[^13]: 19%
[^14]: 28%
[^15]: 24%
The flowchart below shows the typical processes involved in the installation of electrical conduit during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.
11.1 Electrical Conduit Installation Process

The following sections show the steps involved when installing electrical conduit. While the specific construction techniques employed or type of material used may differ, these are the common stages of work that are commonly carried out on site.

11.1.1 Transportation of Conduit Materials to Location

Transportation of conduit materials to location refer to transporting from the holding area on-site to the working area.
11.1.2 Setting Out
Setting out include marking the electrical conduit routing and creating opening through wall for pipe penetration. The time taken for hacking of block/brickwall to conceal conduit is included.

11.1.3 Preparation of Materials
Preparation of materials includes cutting of electrical conduit, bending to required shaped and forming of tread for junction connection.
11.1.4 Installation of Electrical Conduits

Fixing electrical conduit to holding bracket (Patching of grooves and opening shall not be included)

Installing of holding bracket for electrical conduit

Laying and securing of the M & E Services in slab
11.2 Electrical Conduit Installation Productivity Monitoring Form

The Electrical Conduit Installation Productivity Monitoring Form has been designed to standardize the monitoring of productivity for electrical conduit installation. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and relate to the methodology before using the form.

Methodology

1) The location where the electrical conduit installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the electrical conduit installation has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Kitchen.

2) The following should then be calculated or recorded:
 a) Length of conduit installed
 b) Type of installation
 c) Conduit material
 d) Ceiling height
 e) Manpower used during the electrical conduit installation; this should include the trade gang and safety & health workers. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 6.31 manhours were required to install 20m of electrical conduit. This is equivalent to 4 men working for approximately 1.58 hours to install 20m of electrical conduit.

4) The trade productivity is then calculated by dividing the length of electrical conduit by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A material hoist was used in the example.
 b) Breakdown of the manpower type. The example shows 2 tradesmen, 1 material hoist operator and 1 general worker.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transporting of conduit materials to location
 b) Setting out
 c) Preparation of conduit materials
 d) Installation of electrical conduits

 (The form should indicate as a percentage the time taken for each of the above activities)

Case Example

Project Information
This project consists of 3 blocks of residential buildings:
- Location = Block 123 #05-13 Kitchen
- Length of conduit = 20m
- Ceiling height = 2900mm

Manpower Size
Trade manpower = 2men
Material hoist operator = 1man
Safety and Health workers = 1 general worker

Time taken
Transportation of conduit materials to location
(Material hoist in operation) 0.80 manhours
(Material hoist downtime) 0.50 manhours (excluded)
Setting out 1.20 manhours
Preparation of materials 1.89 manhours
Installation of electrical conduits 2.42 manhours
Total 6.31 manhours

Productivity Calculation

Trade Productivity = \[
\frac{\text{Length of conduit}}{\text{Total manhours}}
\]

= \[
\frac{20 \text{ m}^2}{6.31 \text{ manhours}}
\]

= 3.01m/manhours
Electrical Conduit Installation Productivity Monitoring Form

Project Title:

Breakdown of Manpower Size

Please indicate the % of time taken in each activity.

S/no	Location	Length (m)	Total Manhour Taken	Trade Productivity (m/manhour)	Mechanical and Non-mechanical equipment used (if any)	Type of Installation	Conduit Material	Ceiling Height (mm)	Trade Manpower	Machine Operator	Safety and Health Manpower Size	Transportaiton of Conduit Materials to Location	Setting Out	Preparation of Conduit Materials	Installation of Electrical Conduits
1	E.g.²	Blk 123 #05-13 Kitchen	20	6.31	3.01	1 x Material Hoist 1 x Ladder	Exposed Conduit	GI	2900	2 men	1 man	1 man	12%	19%	30%

Notes:

1. The manhours taken do not include hours clocked by the site management team.
2. Activities that are performed off-site shall not be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
6. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
7. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities “Setting Out”.
8. The installation of M&E conduits in slab during the structural stage should be monitored separately in m/manhour.
9. The trade productivity value shown in the example is not meant for benchmarking purpose.

Remark:

Recorded By: ________________________ Checked By: _______________________

Date: __________________________ Date: _______________________
The flowchart below shows the typical processes involved in the installation of water pipe during construction. It serves as a guide on the activities that are to be considered during the measurement of productivity for this trade.

1. Transportation of Piping Materials to Location
 - Exposed Water Pipe
 - Concealed Water Pipe

2. Setting Out
 - Exposed Water Pipe: Including hacking to form grooves
 - Concealed Water Pipe: Drywall
 - Concealed Water Pipe: Block / Brickwall

3. Preparation of Materials
 - Exposed Water Pipe
 - Concealed Water Pipe

4. Installation of Water Pipes
 - Exposed Water Pipe
 - Concealed Water Pipe
12.1 Water Pipe Installation Process

The following sections show the steps involved when installing water pipe. While the specific construction techniques employed may differ, these are the common stages of work that are commonly carried out on site.

12.1.1 Transportation of Piping Materials to Location

Transportation of piping materials to location refer to transporting from the holding area on-site to the working area.

12.1.2 Setting Out

Setting out include marking the water pipe routing and creating opening through wall for pipe penetration. The time take for hacking of block/brickwall to conceal the water pipe shall be included.
12.1.3 Preparation of Water Pipes

Preparation of water pipe include the marking & cutting of the water pipe.

- Measuring and marking on water pipe
- Cutting of water pipe to required length
- Bending of water pipe
- Cutting of PEX pipe
12.1.4 Installation of Water Pipes

Installation of water pipes includes jointing of water pipe and mounting to wall bracket. There are various methods of jointing such as the following:

- Jointing of water pipe by soldered connection
- Jointing of water pipe by crimped connection
- Joining of water pipe by threaded connection
- Jointing of PEX pipe by pressed connection
Water Pipe Installation Productivity Monitoring Form

The Water Pipe Installation Productivity Monitoring Form has been designed to standardize the monitoring of productivity for water pipe installation. The methodology gives the step by step guide on how to carry out the monitoring and the items to be included in the form. Builders should read the case example and relate to the methodology before using the form.

Methodology

1) The location where the water pipe installation would be monitored should first be identified. It is recommended for the builder to start the monitoring when the water pipe installation has reached the stage of a typical floor. The example shows the monitoring on Block 123 #05-13 Kitchen.

2) The following should then be calculated or recorded:
 a) Pipe length
 b) Method of connection
 c) Concealed or exposed piping
 d) Piping material
 e) Ceiling height
 f) Manpower used during the water pipe installation; this should include the trade gang and safety & health workers. Work done by the site management team such as planning should not be included as their main role is management and does not influence the installation work directly.

3) The unit used for the manpower is manhour. 1 manhour is defined as 1 man working for 1 hour. The example shows that about 8 manhours were required to install 20m of water pipe. This is equivalent to 4 men working for approximately 2.00 hours to install 20m of water pipe.

4) The trade productivity is then calculated by dividing the length of water pipe by the manhours taken.

5) The following information should be provided in the form:
 a) Type of equipment used. A material hoist was used in the example.
 b) Breakdown of the manpower type. The example shows 2 tradesmen, 1 material hoist operator and 1 general worker.

6) The manpower and time should be recorded when workers are carrying out the following activities:
 a) Transporting of piping materials to location
 b) Setting out
 c) Preparation of piping materials
 d) Installation of water pipe

 (The form should indicate as a percentage the time taken for each of the above activities)

Case Example

Project Information
This project consists of 3 blocks of residential buildings:
- Location = Block 123 #05-13 Kitchen
- Length of water pipe = 20m
- Ceiling height = 2900mm

Manpower Size
- Trade manpower = 2men
- Material hoist operator = 1man
- Safety and Health Workers = 1 general worker

Time taken

<table>
<thead>
<tr>
<th>Activity</th>
<th>Manhours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation of ducting materials to location</td>
<td>0.80</td>
</tr>
<tr>
<td>(Material hoist in operation)</td>
<td></td>
</tr>
<tr>
<td>(Material hoist downtime)</td>
<td>0.50</td>
</tr>
<tr>
<td>(excluded)</td>
<td></td>
</tr>
<tr>
<td>Setting out</td>
<td>1.20</td>
</tr>
<tr>
<td>Preparation of piping materials</td>
<td>2.80</td>
</tr>
<tr>
<td>Installation of water pipe</td>
<td>3.20</td>
</tr>
<tr>
<td>Total</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Productivity Calculation

Trade Productivity = \frac{\text{Length of water pipe}}{\text{Total manhours}}

\[= \frac{20 \text{ m}}{8 \text{ manhours}} \]

\[= 2.50 \text{ m/manhours} \]
Water Pipe Installation Productivity Monitoring Form

Project Title:

<table>
<thead>
<tr>
<th>S/no</th>
<th>Location</th>
<th>Pipe Length (m)</th>
<th>Total Manhour Taken</th>
<th>Trade Productivity (m/Manhour)</th>
<th>Mechanical and Non-mechanical equipment used</th>
<th>Method of Connection</th>
<th>Piping Material</th>
<th>Ceiling Height (mm)</th>
<th>Trade</th>
<th>Machine Operator</th>
<th>Safety and Health</th>
<th>Transportation of Piping Materials to Location</th>
<th>Setting Out</th>
<th>Preparation of Materials</th>
<th>Installation of Water Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blk 123 #05-13 Kitchen</td>
<td>20m</td>
<td>8</td>
<td>2.5</td>
<td>boom/scissor/personnel lift, etc.</td>
<td>soldered connection</td>
<td>copper</td>
<td>3200</td>
<td>2 men</td>
<td>1 man</td>
<td>1 man</td>
<td>10%</td>
<td>15%</td>
<td>35%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Remark:

- Recorded By: ________________________ Checked By: _______________________ Date: ________________________ Date: ________________________

Notes:

1. The manhours taken **do not** include hours clocked by the site management team.
2. Activities that are performed off-site **shall not** be included (e.g. prefabrication, pre-installation).
3. The trade manpower size refers to the gang size only.
4. The machine operator manpower size refers to operators of lifting equipment, transportation equipment and temporary hoist.
5. The safety and health manpower size refers to safety supervisor, rigger/signaller and housekeeping worker.
6. The time taken for the transportation of materials within the site by crane or other mechanical means shall be taken into account in the total manhours taken for the specific trade.
7. The time taken to hack away opening or groove for concealment of piping shall be recorded. Patching of void to seal up opening or concealed piping **shall not** be recorded.
8. The manhours taken for the erection/dismantling of scaffolding, if any, shall be recorded under the activities "Setting Out".
9. The time taken for testing of water leakage or rectification work to leaking parts **shall not** be included.
10. The trade productivity value shown in the example is not meant for benchmarking purpose.

Breakdown of Manpower Size

Please indicate the % of time taken in each activities

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport of Piping Materials to Location</td>
<td>10%</td>
<td>15%</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>Setting Out</td>
<td>10%</td>
<td>15%</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>Preparation of Materials</td>
<td>10%</td>
<td>15%</td>
<td>35%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Percentage of time taken for Activities 1 to 4 **MUST** add up to 100%.
References

1. ASTM E2691 Practice for Job Productivity Measurements by ASTM International

2. Good Industry Practices - Ceramic Tiling (Second Edition) by Building and Construction Authority

Notes