This design guide serves as Singapore’s national code of practice for the use of alternative steel materials in design to the British Standard “BS 5950 Structural use of steelwork in building”, including those manufactured to British Standards. Steel materials not covered in BS 5950 by default shall be allowed with or without restrictions if they are in compliance with the provisions of this design guide.

The objective of this design guide is to ensure that only adequate (in terms of material performance) and reliable (in terms of quality assurance) steel materials, regardless of material standards to which the materials are manufactured to, are used in the design of structural steelworks to ensure public safety.

This design guide only gives provisions for structural design based on BS 5950, and therefore only serves as guidance at the design stage. It has been assumed in the drafting of this design guide that the execution of its provisions is entrusted to appropriately qualified persons, in compliance with appropriate execution standards to control materials, fabrication and erection of steelwork.

As a code of practice, this design guide takes the form of guidance and recommendations. It should not be quoted as if it was a specification and particular care should be taken to ensure that claims of compliance are not misleading. Reference for additional design recommendations other than those given in this design guide shall be made to various parts of BS 5950.

This design guide does not purport to include all the necessary provisions of a contract. Users of this design guide are responsible for their correct application.

Compliance with this design guide does not of itself confer immunity from legal obligations.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>I</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XI</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>XII</td>
</tr>
</tbody>
</table>

SECTION 1. INTRODUCTION

1.1 Scope
1.2 Acronyms
1.2.1 Acronyms for standards and organizations
1.2.2 Acronyms for technical terms
1.3 Terms and definitions
1.3.1 Alternative steel materials
1.3.2 Classification of alternative steel materials
1.3.3 Material performance requirements
1.3.4 Quality assurance requirements
1.3.5 Certified steel materials
1.3.6 Manufacturer
1.3.7 Stockist
1.3.8 Trader
1.3.9 Purchaser
1.3.10 Product
1.3.11 Certification agency
1.4 Technical equations
1.4.1 Carbon equivalent value
1.4.2 Proportional gauge length

SECTION 2. MATERIAL PERFORMANCE REQUIREMENTS

2.1 Steel plates
2.1.1 Manufacturing process
2.1.2 Mechanical properties
2.1.3 Chemical composition
2.1.4 Dimensional and mass tolerances
2.2 Hot rolled sections
2.2.1 Manufacturing process
2.2.2 Mechanical properties
2.2.3 Chemical composition
2.2.4 Dimensional and mass tolerances
2.3 Hollow sections
 2.3.1 Manufacturing process
 2.3.2 Mechanical properties
 2.3.3 Chemical composition
 2.3.4 Dimensional and mass tolerances

2.4 Steel for cold forming
 2.4.1 Manufacturing process
 2.4.2 Mechanical properties
 2.4.3 Chemical composition
 2.4.4 Dimensional and mass tolerances

2.5 Non-preloaded bolting assemblies
 2.5.1 Manufacturing process
 2.5.2 Mechanical properties
 2.5.3 Chemical composition
 2.5.4 Dimensional tolerances

2.6 Preloaded bolting assemblies
 2.6.1 Manufacturing process
 2.6.2 Mechanical properties
 2.6.3 Chemical composition
 2.6.4 Dimensional tolerances

2.7 Welding consumables
 2.7.1 Mechanical properties

2.8 Profiled steel sheets
 2.8.1 Manufacturing process
 2.8.2 Mechanical properties
 2.8.3 Chemical composition
 2.8.4 Dimensional and mass tolerances

2.9 Stud shear connectors
 2.9.1 Manufacturing process
 2.9.2 Mechanical properties
 2.9.3 Dimensional tolerances

SECTION 3. QUALITY ASSURANCE REQUIREMENTS

3.1 Factory production control
 3.1.1 Feedstock materials
 3.1.2 Equipment
 3.1.3 Personnel
 3.1.4 Product testing
 3.1.5 Product marking
 3.1.6 Non-conforming products
3.2 Manufacturer test certificates
 3.2.1 Information of manufacturer
 3.2.2 Reference details
 3.2.3 Material specifications
 3.2.4 Information for traceability
 3.2.5 Test results
 3.2.6 Authentication

SECTION 4. CLASSIFICATION OF ALTERNATIVE STEEL MATERIALS
4.1 Adequacy assessment
 4.1.1 Certification
 4.1.2 Material testing

4.2 Reliability assessment
 4.2.1 Factory production control certificates
 4.2.2 Manufacturer test certificates

4.3 Classification procedure
 4.3.1 Class 1 alternative steel materials
 4.3.2 Class 2 alternative steel materials
 4.3.3 Class 3 alternative steel materials

4.4 Special case

SECTION 5. DESIGN RECOMMENDATIONS
5.1 Design recommendations on Class 1 alternative steel materials
 5.1.1 Class 1 structural steel
 5.1.2 Class 1 non-preloaded bolted connections
 5.1.3 Class 1 preloaded bolted connections
 5.1.4 Class 1 fillet welds
 5.1.5 Class 1 profiled steel sheets
 5.1.6 Class 1 stud shear connectors

5.2 Design recommendations on Class 2 alternative steel materials
 5.2.1 Class 2 structural steel
 5.2.2 Class 2 non-preloaded bolted connections
 5.2.3 Class 2 preloaded bolted connections
 5.2.4 Class 2 fillet welds
 5.2.5 Class 2 profiled steel sheets
 5.2.6 Class 2 stud shear connectors

5.3 Design recommendations on Class 3 alternative steel materials
 5.3.1 Class 3 structural steel
 5.3.2 Class 3 non-preloaded bolted connections
 5.3.3 Class 3 preloaded bolted connections
5.3.4 Class 3 fillet welds
5.3.5 Class 3 profiled steel sheets
5.3.6 Class 3 stud shear connectors

5.4 Other properties

APPENDIX A LISTS OF CERTIFIED STEEL MATERIALS

A.1 Certified British/European steel materials
A.1.1 Certified British/European steel plates
A.1.2 Certified British/European hot rolled sections
A.1.3 Certified British/European hollow sections
A.1.4 Certified British/European steel for cold forming
A.1.5 Certified British/European non-preloaded bolting assemblies
A.1.6 Certified British/European preloaded bolting assemblies
A.1.7 Certified British/European welding consumables
A.1.8 Certified British/European profiled steel sheets
A.1.9 Certified British/European stud shear connectors

A.2 Certified American steel materials
A.2.1 Certified American steel plates
A.2.2 Certified American hot rolled sections
A.2.3 Certified American hollow sections
A.2.4 Certified American steel for cold forming
A.2.5 Certified American non-preloaded bolting assemblies
A.2.6 Certified American preloaded bolting assemblies
A.2.7 Certified American welding consumables
A.2.8 Certified American profiled steel sheets
A.2.9 Certified American stud shear connectors

A.3 Certified Japanese steel materials
A.3.1 Certified Japanese steel plates
A.3.2 Certified Japanese hot rolled sections
A.3.3 Certified Japanese hollow sections
A.3.4 Certified Japanese steel for cold forming
A.3.5 Certified Japanese non-preloaded bolting assemblies
A.3.6 Certified Japanese preloaded bolting assemblies
A.3.7 Certified Japanese welding consumables
A.3.8 Certified Japanese profiled steel sheets
A.3.9 Certified Japanese stud shear connectors

A.4 Certified Australian/New Zealand steel materials
A.4.1 Certified Australian/New Zealand steel plates
A.4.2 Certified Australian/New Zealand hot rolled sections
A.4.3 Certified Australian/New Zealand hollow sections
A.4.4 Certified Australian/New Zealand steel for cold forming
A.4.5 Certified Australian/New Zealand non-preloaded bolting assemblies 55
A.4.6 Certified Australian/New Zealand preloaded bolting assemblies 55
A.4.7 Certified Australian/New Zealand welding consumables 56
A.4.8 Certified Australian/New Zealand profiled steel sheets 56
A.4.9 Certified Australian/New Zealand shear stud connectors 56

A.5 Certified Chinese steel materials 57
A.5.1 Certified Chinese steel plates 57
A.5.2 Certified Chinese hot rolled sections 58
A.5.3 Certified Chinese hollow sections 58
A.5.4 Certified Chinese steel for cold forming 59
A.5.5 Certified Chinese non-preloaded bolting assemblies 59
A.5.6 Certified Chinese preloaded bolting assemblies 59
A.5.7 Certified Chinese welding consumables 60
A.5.8 Certified Chinese profiled steel sheets 60
A.5.9 Certified Chinese stud shear connectors 60

APPENDIX B TESTING OF STEEL MATERIALS 61

APPENDIX C STANDARDS FOR REFERENCE 62
C.1 British/European standards for reference 62
 C.1.1 British/European standards on design of steel structures 62
 C.1.2 British/European standards on steel materials 62
 C.1.3 British/European standards on manufacturing tolerances 63
 C.1.4 British/European standards on bolting assemblies 64
 C.1.5 British/European standards on welding consumables 65
 C.1.6 British/European standards on profiled steel sheets 65
 C.1.7 British/European standards on stud shear connectors 65
 C.1.8 British/European standards on material testing 65
 C.1.9 British/European standards on inspection documents 65

C.2 American standards for reference 66
 C.2.1 American standards on design of steel structures 66
 C.2.2 American standards on steel materials 66
 C.2.3 American standards on manufacturing tolerances 67
 C.2.4 American standards on bolting assemblies 67
 C.2.5 American standards on welding consumables 68
 C.2.6 American standards on profiled steel sheets 68
 C.2.7 American standards on shear stud connectors 68

C.3 Japanese standards for reference 69
 C.3.1 Japanese standards on design of steel structures 69
 C.3.2 Japanese standards on steel materials 69
 C.3.3 Japanese standards on manufacturing tolerances 69
 C.3.4 Japanese standards on bolting assemblies 69
C.3.5 Japanese standards on welding consumables 70
C.3.6 Japanese standards on profiled steel sheets 70
C.3.7 Japanese standards on stud shear connectors 70

C.4 Australian/New Zealand standards for reference 71
C.4.1 Australian/New Zealand standards on design of steel structures 71
C.4.2 Australian/New Zealand standards on steel materials 71
C.4.3 Australian/New Zealand standards on manufacturing tolerances 71
C.4.4 Australian/New Zealand standards on bolting assemblies 71
C.4.5 Australian/New Zealand standards on welding consumables 71
C.4.6 Australian/New Zealand standards on profiled steel sheets 72
C.4.7 Australian/New Zealand standards on shear stud connectors 72

C.5 Chinese standards for reference 73
C.5.1 Chinese standards on design of steel structures 73
C.5.2 Chinese standards on steel materials 73
C.5.3 Chinese standards on manufacturing tolerances 73
C.5.4 Chinese standards on bolting assemblies 73
C.5.5 Chinese standards on welding consumables 74
C.5.6 Chinese standards on profiled steel sheets 74
C.5.7 Chinese standards on stud shear connectors 74
List of Tables

Table 1 — Chemical composition requirements for steel plates based on ladle analysis 7
Table 2 — Chemical composition requirements for hot rolled sections based on ladle analysis 8
Table 3 — Chemical composition requirements for hot finished hollow sections based on ladle analysis 10
Table 4 — Chemical composition requirements for cold-formed hollow sections based on ladle analysis 10
Table 5 — Recommended grades of non-preloaded bolts 12
Table 6 — Recommended grades of nuts in non-preloaded assemblies 13
Table 7 — Hardness requirements for non-preloaded bolts 13
Table 8 — Hardness requirements for nuts in non-preloaded assembly 13
Table 9 — Chemical composition requirements for non-preloaded bolts based on product analysis 14
Table 10 — Chemical composition requirements for nuts in non-preloaded assemblies based on product analysis 14
Table 11 — Recommended grades of preloaded bolts 15
Table 12 — Recommended grades of nuts in preloaded assemblies 15
Table 13 — Hardness requirements for preloaded bolts 15
Table 14 — Hardness requirements for nuts in preloaded assemblies 16
Table 15 — Chemical composition requirements for nuts in preloaded assemblies based on product analysis 16
Table 16 — Design strengths of British/European (BS EN) structural steels 28
Table 17 — Design strengths of American (ASTM and API) structural steels 29
Table 18 — Design strengths of Japanese (JIS) structural steels 30
Table 19 — Design strengths of Australian/New Zealand (AS/NZS) structural steels 31
Table 20 — Design strengths of Chinese (GB) structural steels 32
Table 21 — Design strengths of British/European (BS EN) non-preloaded bolts 32
Table 22 — Design strengths of American (ASTM) non-preloaded bolts 33
Table 23 — Design strengths of Japanese (JIS) non-preloaded bolts 33
Table 24 — Design strengths of Australian/New Zealand (AS) non-preloaded bolts 33
Table 25 — Design strengths of Chinese (GB) non-preloaded bolts 34
Table 26 — Recommended combinations of British/European (BS EN) non-preloaded bolting assemblies 34
Table 27 — Recommended combinations of American (ASTM) non-preloaded bolting assemblies 34
Table 28 — Recommended combinations of Japanese (JIS) non-preloaded bolting assemblies
Table 29 — Recommended combinations of Australian/New Zealand (AS/NZS) non-preloaded bolting assemblies
Table 30 — Recommended combinations of Chinese (GB) non-preloaded bolting assemblies
Table 31 — Design strengths of British/European (BS EN) preloaded bolts
Table 32 — Design strengths of American (ASTM) preloaded bolts
Table 33 — Design strengths of Japanese (JIS) preloaded bolts
Table 34 — Design strengths of Australian/New Zealand (AS) preloaded bolts
Table 35 — Design strengths of Chinese (GB) preloaded bolts
Table 36 — Recommended combinations of British/European (BS EN) preloaded bolting assemblies
Table 37 — Recommended combinations of American (ASTM) preloaded bolting assemblies
Table 38 — Recommended combinations of Japanese (JIS) preloaded bolting assemblies
Table 39 — Recommended combinations of Australian/New Zealand (AS/NZS) preloaded bolting assemblies
Table 40 — Recommended combinations of Chinese (GB) preloaded bolting assemblies
Table 41 — Design strengths of fillet weld made of British/European (BS EN) welding consumables
Table 42 — Design strengths of fillet weld made of American (AWS) welding consumables
Table 43 — Design strengths of fillet weld made of Japanese (JIS) welding consumables
Table 44 — Design strengths of fillet weld made of Australian/New Zealand (AS) welding consumables
Table 45 — Design strengths of fillet weld made of Chinese (GB) welding consumables
Table 46 — Design strengths of British/European (BS EN) profiled steel sheets
Table 47 — Design strengths of American (ASTM) profiled steel sheets
Table 48 — Design strengths of Japanese (JIS) profiled steel sheets
Table 49 — Design strengths of Australian/New Zealand (AS/NZS) profiled steel sheets
Table 50 — Design strengths of Chinese (GB) profiled steel sheets
Table 51 — Tensile strengths of British/European (BS EN), American (AWS), Japanese (JIS), Australian/New Zealand (AS/NZS) and Chinese (GB) stud shear connectors
Table 52 — Design strengths of Class 2 structural steels
Table 53 — Design strengths of Class 2 non-preloaded bolts
List of Figures

Figure 1 — Overall framework for classification of alternative steel materials 25
List of Symbols

For the purposes of this design guide, the following symbols apply.

- f_u: Tensile strength of stud shear connector, in N/mm2
- L_o: Proportional gauge length used to compute elongation in tensile test, in mm
- p_{bb}: Bearing strength of bolts, in N/mm2
- p_s: Shear strength of bolts, in N/mm2
- p_t: Tension strength of bolts, in N/mm2
- p_w: Design strength of fillet welds, in N/mm2
- p_y: Design strength of structural steels, in N/mm2
- p_{yo}: Basic design strength of structural steels with thickness not greater than 16 mm, in N/mm2
- S_o: Original cross-sectional area of specimen in tensile test, in mm2
- t: Thickness of steel materials, in mm
- U_b: Minimum tensile strength of bolts, in N/mm2
- U_s: Minimum tensile strength of welding consumables, in N/mm2
- U_y: Minimum tensile strength of structural steels, in N/mm2
- Y_b: Minimum yield strength of bolts, in N/mm2; which is taken as the stress at either the initiation of yielding for steel materials with clearly defined yield point; and as the lesser of 0.2% proof stress, or the stress at 0.5% total elongation, for steel materials with no clearly defined yield point
- Y_{yo}: Minimum yield strength of structural steels, in N/mm2; which is taken as the stress at either the initiation of yielding for steel materials with clearly defined yield point; and as the lesser of 0.2% proof stress, or the stress at 0.5% total elongation, for steel materials with no clearly defined yield point
Section 1
Introduction

1.1 Scope
1.2 Acronyms
1.3 Terms and definitions
1.4 Technical equations
Section 1 Introduction

1.1 Scope
Under the provisions of this design guide, alternative steel materials not manufactured to British Standards may be allowed in structural design based on BS 5950. To be consistent, this design guide outlines the material performance requirements and quality assurance requirements to be imposed on all steel materials, including those manufactured to British Standards, intended for use in accordance with BS 5950, in the context of Singapore.

1.2 Acronyms
Unless otherwise stated, the following acronyms apply throughout this design guide.

1.2.1 Acronyms for standards and organizations
- AS - Australian Standard(s)
- AISC - American Institute of Steel Construction
- ANSI - American National Standards Institute
- API - American Petroleum Institute
- ASTM - American Society for Testing and Materials
- AWS - American Welding Society
- BCA - Building and Construction Authority of Singapore
- BS - British Standard(s)
- EN - European Standard(s)
- GB - National Standard(s) of the People’s Republic of China
- ISO - International Organization for Standardization
- JIS - Japanese Industrial Standard(s)
- NZS - New Zealand Standard(s)
- SINGLAS - The Singapore Laboratory Accreditation Scheme

1.2.2 Acronyms for technical terms
- CEV - Carbon equivalent value
- FPC - Factory production control
- NDT - Non-destructive testing

1.3 Terms and definitions
For the purposes of this design guide, the following terms and definitions apply.

1.3.1 Alternative steel materials
Alternative steel materials are steel materials not manufactured in accordance with British Standards, and therefore not covered in BS 5950 by default. The use of alternative steel materials in BS 5950 shall be allowed with or without recommendations and/or restrictions according to the classification defined in 1.3.2.

1.3.2 Classification of alternative steel materials
Classification of alternative steel materials is carried out based on the assessments of both material performance requirements defined in 1.3.3 and quality assurance requirements defined in 1.3.4 to categorise alternative steel materials into three classes – Class 1, Class 2 and Class 3 for the purpose of design to BS 5950 defined in Section 4.

NOTE See Section 4 for more details on the classification procedure and the description for each class.
1.3.3 Material performance requirements

Material performance requirements are the essential requirements for the mechanical, physical, dimensional and/or other relevant properties of alternative steel materials to ensure their adequacy to be used in the structural design based on BS 5950.

NOTE See Section 2 for more details on structural performance requirements.

1.3.4 Quality assurance requirements

Quality assurance requirements are the requirements for the manufacturers of alternative steel materials to provide adequate assurance on the nominal specifications of the materials, and are acceptable to BCA, to ensure their reliability to be used in the structural design based on BS 5950.

NOTE See Section 3 for more details on quality assurance requirements.

1.3.5 Certified steel materials

Certified steel materials are alternative steel materials which can be found in Singapore and manufactured to one of the five international standards, which are British/European (BS EN), American (API, ASTM and AWS), Japanese (JIS), Australian/New Zealand (AS/NZS and AS) and Chinese (GB) standards, with their nominal specifications already certified to be complying with the essential material performance requirements through rigorous evaluation.

Not all materials manufactured to the abovementioned five international standards are in the lists of certified steel materials (see Appendix A), but only those which meet the essential material performance requirements.

NOTE Certified steel materials still need to be classified accordingly (see Section 4).

1.3.6 Manufacturer

The term ‘manufacturer’ in this design guide shall refer to the manufacturer of steel materials.

1.3.7 Stockist

The term ‘stockist’ in this design guide shall refer to the supplier of steel materials who does not manufacture the steel materials, but only stocks and supplies the steel materials to the market.

1.3.8 Trader

The term ‘trader’ in this design guide shall refer to the supplier of steel materials who does not manufacture the steel materials, but only supplies the steel materials to the market.

1.3.9 Purchaser

The term ‘purchaser’ in this design guide shall refer to the purchaser of steel materials for design, fabrication and erection of steelwork.

1.3.10 Product

The term ‘product’ in this design guide shall refer to the steel material produced or manufactured by the ‘manufacturer’ defined in 1.3.6.
1.3.11 Certification agency

The term ‘certification agency’ in this design guide shall refer to the independent third-party agency which carries out the duty of auditing the production control system of a manufacturer through necessary inspection, assessment and surveillance.

NOTE Attestation by a certification agency, acceptable to or recognised by BCA, is part of the quality assurance requirements (see Section 3).

1.4 Technical equations

Unless otherwise stated, the following technical equations apply throughout this design guide.

1.4.1 Carbon equivalent value

Carbon equivalent value as a measure of the weldability of steel materials shall be computed using the following equation.

\[CEV(\%) = C + \frac{\%Mn}{6} + \frac{\%Cr + \%Mo + \%V}{5} + \frac{\%Cu + \%Ni}{15} \]

1.4.2 Proportional gauge length

Proportional gauge length used in computing the elongation as a measure of the ductility of steel materials shall be computed using the following equation.

\[L_o = 5.65\sqrt{S_o} \]
Section 2
Material Performance Requirements

2.1 Steel plates
2.2 Hot rolled sections
2.3 Hollow sections
2.4 Steel for cold forming
2.5 Non-preloaded bolting assemblies
2.6 Preloaded bolting assemblies
2.7 Welding consumables
2.8 Profiled steel sheets
2.9 Stud shear connectors
Alternative steel materials shall be manufactured to a national standard in the first place and they shall, at the same time, meet the relevant material performance requirements. The essential material performance requirements for various types of commonly available alternative steel materials are as given in 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9.

Project-specific (internal soundness and through thickness deformation properties, for examples) or other requirements given in BS 5950 but not covered by this design guide (surface and physical conditions, for examples) shall also be complied with.

2.1 Steel plates

This section covers hot-rolled uncoated steel plates with a minimum thickness of 3 mm, supplied flat or pre-curved in any shape as required. Steel for cold forming (see 2.4) is not within the scope of this section.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-1, BS 5950-2, BS EN 1993-1-12, BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10025-5, BS EN 10025-6, BS EN 10025-7, BS EN 10029 and BS EN 10051.

2.1.1 Manufacturing process

Rimming steel shall not be allowed and the steel shall be at least semi-killed in the deoxidation process. The plates may be produced directly on reversing mill, by cutting from parent plates rolled on reversing mill or hot rolled wide strips. The plate edges may be as rolled or sheared, flame cut or chamfered.

The products may be supplied in as-rolled, normalized or quenched and tempered condition, or with controlled rolling (normalized rolling or thermo-mechanical rolling).

2.1.2 Mechanical properties

2.1.2.1 Strength

The nominal yield strength shall be in the range of 235 N/mm² to 690 N/mm². The nominal tensile strength shall be in the range of 300 N/mm² to 1000 N/mm².

2.1.2.2 Ductility

The elongation after fracture on proportional gauge length shall be at least 15 %, for nominal yield strength not greater than 460 N/mm²; and shall be at least 10 % for nominal yield strength greater than 460 N/mm². The tensile strength to yield strength ratio shall be at least 1.2 based on nominal values, or at least 1.1 based on actual values, for nominal yield strength not greater than 460 N/mm².

NOTE Conversion of elongation values measured not based on proportional gauge length is necessary and shall be performed according to BS EN ISO 2566-1.

2.1.2.3 Impact toughness

As a minimum, the product shall be able to absorb at least 27 J of impact energy at 20 °C.

NOTE Depending on other factors including the thickness and minimum service temperature, the impact toughness should also conform to the appropriate requirements as given in BS 5950-1.

2.1.2.4 Through thickness deformation properties

Where appropriate, through thickness deformation properties shall be specified to guarantee adequate deformation capacity perpendicular to the surface to provide ductility and toughness against lamellar tearing.

NOTE Specification of through thickness deformation properties can be referred to BS EN 10164.
2.1.3 Chemical composition

In general, based on ladle analysis, carbon content shall not exceed 0.26 %; maximum CEV and content of impurities shall be in accordance with the requirements given in Table 1.

NOTE 1 Interpolation for maximum content shall be allowed for design strength not given in Table 1.

NOTE 2 Depending on the product thickness or variation in metallurgical process and intended use, the requirements for chemical composition might vary and shall be referred to BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10025-5 and BS EN 10025-6.

<table>
<thead>
<tr>
<th>σ_y (N/mm², based on t ≤ 16 mm)</th>
<th>Maximum content (% by mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEV</td>
</tr>
<tr>
<td>235</td>
<td>0.40</td>
</tr>
<tr>
<td>275</td>
<td>0.44</td>
</tr>
<tr>
<td>355</td>
<td>0.49</td>
</tr>
<tr>
<td>420</td>
<td>0.52</td>
</tr>
<tr>
<td>460</td>
<td>0.55</td>
</tr>
<tr>
<td>460H</td>
<td>0.50</td>
</tr>
<tr>
<td>550H</td>
<td>0.83</td>
</tr>
<tr>
<td>690H</td>
<td>0.83</td>
</tr>
</tbody>
</table>

a) For certain weathering steel, maximum phosphorous content shall be allowed up to 0.15 %.

b) For quenched and tempered steel only.

2.1.4 Dimensional and mass tolerances

2.1.4.1 Dimensions

In general, the deviation in actual thickness from nominal plate thickness shall not exceed the larger of ± 2 mm and ± 10 %.

2.1.4.2 Mass

In general, the deviation in actual mass from mass computed using a density of 7850 kg/m³ shall be limited by the dimensional tolerances.

2.2 Hot rolled sections

This section covers hot rolled structural open sections including universal beams and columns, joists, channels, angles and T sections.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-1, BS 5950-2, BS EN 10024, BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4, BS EN 10025-5, BS EN 10034, BS EN 10055, BS EN 10056-2, BS EN 10164 and BS EN 10279.
2.2.1 Manufacturing process

Rimming steel shall not be allowed and the steel shall be at least semi-killed in the deoxidation process.

T sections may be produced directly through hot rolling or by splitting the universal beams or columns.

The products may be supplied in as-rolled, normalized or quenched and tempered condition, or with controlled rolling (normalized rolling or thermo-mechanical rolling).

2.2.2 Mechanical properties

2.2.2.1 Strength

The nominal yield strength shall be in the range of 235 N/mm² to 460 N/mm². The nominal tensile strength shall be in the range of 300 N/mm² to 750 N/mm².

2.2.2.2 Ductility

The elongation after fracture on proportional gauge length shall be at least 15%. The tensile strength to yield strength ratio shall be at least 1.2 based on nominal values, or at least 1.1 based on actual values.

NOTE Conversion of elongation values measured not based on proportional gauge length is necessary and shall be performed according to BS EN ISO 2566-1.

2.2.2.3 Impact toughness

As a minimum, the product shall be able to absorb at least 27 J of impact energy at 20 °C.

NOTE Depending on other factors including the thickness and minimum service temperature, the impact toughness should also conform to the appropriate requirements as given in BS 5950-1.

2.2.3 Chemical composition

In general, based on ladle analysis, carbon content shall not exceed 0.26%; maximum CEV and content of impurities shall be in accordance with the requirements given in Table 2.

NOTE 1 Interpolation for maximum content shall be allowed for design strength not given in Table 2.

NOTE 2 Depending on the product thickness or variation in metallurgical process and intended use, the requirements for chemical composition might vary and shall be referred to BS EN 10025-1, BS EN 10025-2, BS EN 10025-3, BS EN 10025-4 and BS EN 10025-5.

Table 2 — Chemical composition requirements for hot rolled sections based on ladle analysis

<table>
<thead>
<tr>
<th>p_y (N/mm², based on t ≤ 16 mm)</th>
<th>Maximum content (% by mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEV</td>
</tr>
<tr>
<td>235</td>
<td>0.40</td>
</tr>
<tr>
<td>275</td>
<td>0.44</td>
</tr>
<tr>
<td>355</td>
<td>0.49</td>
</tr>
<tr>
<td>420</td>
<td>0.52</td>
</tr>
<tr>
<td>460</td>
<td>0.55</td>
</tr>
</tbody>
</table>

a) For certain weathering steel, maximum phosphorous content shall be allowed up to 0.15%.
2.2.4 Dimensional and mass tolerances

2.2.4.1 Dimensions

In general, the deviation in the actual overall dimensions like section height, width and leg length shall not exceed the larger of ± 4 mm and ± 3 %; the deviation in the thicknesses of flange, web and leg shall not exceed the larger of ± 2 mm and ± 10 %.

2.2.4.2 Mass

In general, the deviation in actual mass from mass computed using a density of 7850 kg/m³ shall not exceed ± 6 %, except for T sections where the deviation shall not exceed ± 8 %.

2.3 Hollow sections

This section covers both hot finished and cold-formed structural hollow sections of circular, square or rectangular forms. Hot finished elliptical hollow sections are also within the scope of this section.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-1, BS 5950-2, BS 7668, BS EN 10210-1, BS EN 10210-2, BS EN 10219-1 and BS EN 10219-2.

2.3.1 Manufacturing process

Rimming steel shall not be allowed and the steel shall be at least semi-killed in the deoxidation process.

Quenched and tempered steel shall not be allowed.

Hollow sections shall be manufactured by a seamless or by a welding process.

Hot finished hollow sections may be formed hot, with or without subsequent heat treatment, or formed cold with subsequent heat treatment to attain the metallurgical conditions equivalent to those formed hot. Hot finished hollow sections may also be supplied in normalized condition or with normalized rolling.

Cold-formed hollow sections shall be formed cold without subsequent heat treatment except the weld seam may be in the as welded or heat treated condition. Cold-formed hollow sections may also be supplied in normalized condition or with controlled rolling (normalized rolling or thermo-mechanical rolling).

2.3.2 Mechanical properties

2.3.2.1 Strength

The nominal yield strength shall be in the range of 235 N/mm² to 460 N/mm². The nominal tensile strength shall be in the range of 300 N/mm² to 750 N/mm².

2.3.2.2 Ductility

The elongation after fracture on proportional gauge length shall be at least 15 %.

NOTE Conversion of elongation values measured not based on proportional gauge length is necessary and shall be performed according to BS EN ISO 2566-1.

2.3.2.3 Impact toughness

As a minimum, the product shall be able to absorb at least 27 J of impact energy at 20 °C.

NOTE Depending on other factors including the thickness and minimum service temperature, the impact toughness should also conform to the appropriate requirements as given in BS 5950-1.
2.3.3 Chemical composition

In general, based on ladle analysis, carbon content shall not exceed 0.24 %; maximum CEV and content of impurities shall be in accordance with the requirements given in Table 3 and Table 4.

NOTE 1 Interpolation for maximum content shall be allowed for design strength not given in Table 3 and Table 4.

NOTE 2 Depending on the product thickness or variation in metallurgical process and intended use, the requirements for chemical composition might vary and shall be referred to BS EN 10210-1 and BS EN 10219-1.

Table 3 — Chemical composition requirements for hot finished hollow sections based on ladle analysis

<table>
<thead>
<tr>
<th>p_y (N/mm², based on $t \leq 16$ mm)</th>
<th>Maximum content (% by mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEV</td>
</tr>
<tr>
<td>235</td>
<td>0.41</td>
</tr>
<tr>
<td>275</td>
<td>0.45</td>
</tr>
<tr>
<td>355</td>
<td>0.50</td>
</tr>
<tr>
<td>420</td>
<td>0.52</td>
</tr>
<tr>
<td>460</td>
<td>0.55</td>
</tr>
</tbody>
</table>

^a For certain weathering steel, maximum phosphorous content shall be allowed up to 0.15 %.

Table 4 — Chemical composition requirements for cold-formed hollow sections based on ladle analysis

<table>
<thead>
<tr>
<th>p_y (N/mm², based on $t \leq 16$ mm)</th>
<th>Maximum content (% by mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEV</td>
</tr>
<tr>
<td>235</td>
<td>0.37</td>
</tr>
<tr>
<td>275</td>
<td>0.40</td>
</tr>
<tr>
<td>355</td>
<td>0.48<sup>b</sup></td>
</tr>
<tr>
<td>420</td>
<td>0.50<sup>b</sup></td>
</tr>
<tr>
<td>460</td>
<td>0.53<sup>b</sup></td>
</tr>
</tbody>
</table>

^a For certain weathering steel, maximum phosphorous content shall be allowed up to 0.15 %.

^b If thermo-mechanical rolling, which is recommended to lower the CEV, is introduced, the corresponding maximum CEV allowed shall be reduced by 10 %.

2.3.4 Dimensional and mass tolerances

2.3.4.1 Dimensions

In general, the deviation in the actual overall dimensions like section height, width and diameter shall not exceed ± 2 %; the deviation in the wall thicknesses shall not exceed the larger of ± 2 mm and ± 10 %.
2.3.4.2 Mass

In general, the deviation in actual mass from mass computed using a density of 7850 kg/m³ shall not exceed ± 6 %.

2.4 Steel for cold forming

This section covers steel flat products used for the manufacture of cold-formed open sections such as light-gauge lipped or plain channels and high strength galvanized purlins with a thickness, exclusive of coatings, of not more than 8 mm for use as structural members, and supplied in sheet, strip or coil. Cold-formed structural hollow sections (see 2.3) and profiled steel sheets for composite slabs (see 2.8) are not within the scope of this section.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-5, BS 5950-7, BS EN 10025-2 and BS EN 10051.

2.4.1 Manufacturing process

The steel flat products for cold forming might be hot rolled, cold rolled or continuously hot-dip coated.

For hot rolled steel sheets, strips or coils, rimming steel shall not be allowed and the steel shall be at least semi-killed in the deoxidation process; the products may be supplied in as-rolled, normalized or with controlled rolling (normalized rolling or thermo-mechanical rolling).

For cold rolled steel sheets, strips or coils, low carbon steel shall not be allowed.

For coated steel sheets, strips or coils, low carbon steel shall not be allowed; the coatings might be zinc, zinc-iron alloy, zinc-aluminium alloy, aluminium-zinc alloy or aluminium-silicon alloy.

2.4.2 Mechanical properties

2.4.2.1 Strength

The nominal yield strength shall be in the range of 200 N/mm² to 550 N/mm². The nominal tensile strength shall be in the range of 250 N/mm² to 750 N/mm².

2.4.2.2 Ductility

The elongation after fracture on proportional gauge length shall be at least 15 %, for nominal yield strength not greater than 460 N/mm²; and shall be at least 10 % for nominal yield strength greater than 460 N/mm².

NOTE Conversion of elongation values measured not based on proportional gauge length is necessary and shall be performed according to BS EN ISO 2566-1.

2.4.3 Chemical composition

In general, based on ladle analysis, carbon content shall not exceed 0.25 %, CEV shall not exceed 0.48 % and content of each phosphorous and sulphur shall not exceed 0.05 %. For special steel with high mechanical and/or plastic strain resistances, maximum phosphorous content shall be allowed up to 0.12 %.

NOTE Depending on the product thickness or variation in metallurgical process and intended use, the requirements for chemical composition might vary and shall be referred to BS EN 10025-2, BS EN 10149-2, BS EN 10149-3, BS EN 10268 and BS EN 10326.
2.4.4 Dimensional and mass tolerances

2.4.4.1 Dimensions

In general, the deviation in actual thickness from nominal plate thickness shall not exceed the larger of ± 0.3 mm and ± 10%.

2.4.4.2 Mass

In general, the deviation in actual mass from mass computed using a density of 7850 kg/m³ shall be limited by the dimensional tolerances.

2.5 Non-preloaded bolting assemblies

This section covers structural bolting assemblies, which include the ISO metric hexagon bolts with the matching nuts and washers, used for non-preloaded or bearing type bolted connections. Bolts with thread size in the range of 5 mm to 68 mm; plain washers with or without chamfer, are covered in this section.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 4190, BS 4320, BS 5950-1, BS 5950-2, BS EN 20898-2 (ISO 898-2), BS EN ISO 898-1, BS EN ISO 4014, BS EN ISO 4016, BS EN ISO 4017, BS EN ISO 4018, BS EN ISO 4032, BS EN ISO 4033, BS EN ISO 4034 and BS EN ISO 7091.

2.5.1 Manufacturing process

The bolts may be produced by cold forging or hot forging; alloying or quenching and tempering shall be allowed to achieve higher strength; free cutting steel may be allowed for lower grades of bolts.

The nuts may be produced by cold forging, hot forging or by turning from bar; alloying or quenching and tempering shall be allowed to achieve higher strength; free cutting steel may be allowed for lower grades of nuts.

The washers shall be made from mild steel.

2.5.2 Mechanical properties

2.5.2.1 Strength

For bolts, the nominal tensile strength shall be in the range of 300 N/mm² to 1200 N/mm²; the recommended grades of non-preloaded bolts, and the corresponding nominal tensile and yield strengths, in accordance with the property class designation system of ISO 898-1 are given in Table 5.

NOTE The nominal strengths given in Table 5 shall not be used as the tension strength for design (see BS 5950-1).

Table 5 — Recommended grades of non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade of bolts</th>
<th>Nominal tensile strength (N/mm²)</th>
<th>Nominal yield strength (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>400</td>
<td>240</td>
</tr>
<tr>
<td>8.8</td>
<td>800</td>
<td>640</td>
</tr>
<tr>
<td>10.9</td>
<td>1000</td>
<td>900</td>
</tr>
</tbody>
</table>

For nuts, the proof load stress shall be in the range of 400 N/mm² to 1200 N/mm²; the recommended grades of nuts, and the corresponding proof load stress and the compatible grades of bolts, in accordance with the property class designation system of ISO 898-2 are given in Table 6.

NOTE Nuts of one class higher shall be used when overtapping of nut thread occurs due to the thick coating of bolts.
Table 6 — Recommended grades of nuts in non-preloaded assemblies

<table>
<thead>
<tr>
<th>Grade of nuts</th>
<th>Proof load stress (N/mm²)</th>
<th>Compatible bolt grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>400</td>
<td>≤ 4.8</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>≤ 8.8</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>≤ 10.9</td>
</tr>
</tbody>
</table>

2.5.2.2 Ductility

For bolts, the elongation after fracture on proportional gauge length shall be at least 8 %; the reduction in area after fracture shall be at least 35 %.

2.5.2.3 Hardness

The bolts and nuts of recommended grades shall be able to meet the one of the three hardness ranges given in Table 7 and Table 8, respectively; whereas the Vickers hardness of the washers shall be in between 100 HV to 200 HV.

Table 7 — Hardness requirements for non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade of bolts</th>
<th>Range of hardness</th>
<th>Vickers hardness (HV)</th>
<th>Brinell hardness (HB)</th>
<th>Rockwell hardness (HRB or HRC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>120 – 220</td>
<td>114 – 209</td>
<td>67 – 95 (HRB)</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>250 – 335</td>
<td>238 – 318</td>
<td>22 – 34 (HRC)</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 — Hardness requirements for nuts in non-preloaded assembly

<table>
<thead>
<tr>
<th>Grade of nuts</th>
<th>Range of hardness</th>
<th>Vickers hardness (HV)</th>
<th>Brinell hardness (HB)</th>
<th>Rockwell hardness (HRC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 8</td>
<td>≤ 310</td>
<td>≤ 302</td>
<td>≤ 30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>≤ 370</td>
<td>≤ 353</td>
<td>≤ 36</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>≤ 395</td>
<td>≤ 375</td>
<td>≤ 39</td>
<td></td>
</tr>
</tbody>
</table>

2.5.3 Chemical composition

For bolts, based on product analysis, carbon content shall not exceed 0.55 %; maximum content of impurities shall be in accordance with the requirements given in Table 9.
Table 9 — Chemical composition requirements for non-preloaded bolts based on product analysis

<table>
<thead>
<tr>
<th>Grade of bolts</th>
<th>Maximum content (% by mass)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>≤ 6.8<sup>a</sup></td>
<td>0.050</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>≥ 8.8</td>
<td>0.050</td>
<td>0.060</td>
<td></td>
</tr>
</tbody>
</table>

^a Free cutting steel may be allowed for these grades with the following maximum contents – sulphur 0.34 %, phosphorous 0.11 % and lead 0.35 %.

For nuts, based on product analysis, maximum content of carbon and impurities shall be in accordance with the requirements given in Table 9.

Table 10 — Chemical composition requirements for nuts in non-preloaded assemblies based on product analysis

<table>
<thead>
<tr>
<th>Grade of nuts</th>
<th>Maximum content (% by mass)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>≤ 6<sup>a</sup></td>
<td>0.50</td>
<td>0.110</td>
<td>0.150</td>
</tr>
<tr>
<td>8</td>
<td>0.58</td>
<td>0.060</td>
<td>0.150</td>
</tr>
<tr>
<td>10 and 12</td>
<td>0.58</td>
<td>0.048</td>
<td>0.058</td>
</tr>
</tbody>
</table>

^a Free cutting steel may be allowed for these grades with the following maximum contents – sulphur 0.34 % and lead 0.35 %.

2.5.4 Dimensional tolerances

As a minimum, dimensional tolerances shall be in accordance with the corresponding standards which the bolts, nuts and washers are manufactured to.

2.6 Preloaded bolting assemblies

This section covers structural bolting assemblies, which include the ISO metric hexagon bolts with the matching nuts and washers, used for preloaded or non-slip bolted connections. Bolts with thread size in the range of 12 mm to 36 mm; plain washers with or without chamfer and tension indicating washers, are covered in this section.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 4395-1, BS 4395-2, BS 4604-1, BS 4604-2, BS 5950-1, BS 5950-2, BS 7644-1, BS 7644-2, BS EN 14399-1, BS EN 14399-2, BS EN 14399-3, BS EN 14399-4, BS EN 14399-5, BS EN 14399-6, BS EN 20898-2 (ISO 898-2) and BS EN ISO 898-1.

2.6.1 Manufacturing process

The bolts shall be heat-treated under uniform conditions, and hardened by quenching and tempering.

The nuts shall be heat-treated under uniform conditions, and hardened by quenching and tempering; free cutting steel shall not be allowed.

The washers shall be hardened by quenching and tempering.
2.6.2 Mechanical properties

2.6.2.1 Strength

For bolts, the nominal tensile strength shall be in the range of 800 N/mm² to 1200 N/mm²; the recommended grades of preloaded bolts, and the corresponding nominal tensile and yield strengths, in accordance with the property class designation system of ISO 898-1 are given in Table 11.

NOTE The nominal strengths given in Table 5 shall not be used as the tension strength for design (see BS 5950-1).

Table 11 — Recommended grades of preloaded bolts

<table>
<thead>
<tr>
<th>Grade of bolts</th>
<th>Nominal tensile strength (N/mm²)</th>
<th>Nominal yield strength (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>800</td>
<td>640</td>
</tr>
<tr>
<td>10.9</td>
<td>1000</td>
<td>900</td>
</tr>
</tbody>
</table>

For nuts, the proof load stress shall be in the range of 800 N/mm² to 1200 N/mm²; the recommended grades of nuts, and the corresponding proof load stress and the compatible grades of bolts, in accordance with the property class designation system of ISO 898-2 are given in Table 12.

NOTE Nuts of one class higher shall be used when overtapping of nut thread occurs due to the thick coating of bolts.

Table 12 — Recommended grades of nuts in preloaded assemblies

<table>
<thead>
<tr>
<th>Grade of nuts</th>
<th>Proof load stress (N/mm²)</th>
<th>Compatible bolt grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>800</td>
<td>8.8 or lower</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>10.9 or lower</td>
</tr>
</tbody>
</table>

2.6.2.2 Ductility

For bolts, the elongation after fracture on proportional gauge length shall be at least 8 %.

2.6.2.3 Hardness

The bolts and nuts of recommended grades shall be able to meet the one of the three hardness ranges given in Table 13 and Table 14, respectively; whereas for the washers, either the Vickers hardness shall be in between 300 HV to 370 HV or the Rockwell hardness shall be in between 38 HRC to 45 HRC.

Table 13 — Hardness requirements for preloaded bolts

<table>
<thead>
<tr>
<th>Grade of bolts</th>
<th>Range of hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vickers hardness (HV)</td>
</tr>
<tr>
<td>8.8</td>
<td>250 – 335</td>
</tr>
<tr>
<td>10.9</td>
<td>320 – 380</td>
</tr>
</tbody>
</table>
Table 14 — Hardness requirements for nuts in preloaded assemblies

<table>
<thead>
<tr>
<th>Grade of nuts</th>
<th>Vickers hardness (HV)</th>
<th>Brinell hardness (HB)</th>
<th>Rockwell hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>175 – 310</td>
<td>166 – 302</td>
<td>88 HRB – 30 HRC</td>
</tr>
<tr>
<td>10</td>
<td>258 – 370</td>
<td>248 – 353</td>
<td>24 HRC – 36 HRC</td>
</tr>
<tr>
<td>12</td>
<td>≤ 395</td>
<td>≤ 375</td>
<td>≤ 39 HRC</td>
</tr>
</tbody>
</table>

2.6.3 Chemical composition

For bolts, based on product analysis, carbon content shall not exceed 0.55%; the maximum content of sulphur and phosphorus shall not exceed 0.06% each.

For nuts, based on product analysis, maximum content of carbon and impurities shall be in accordance with the requirements given in Table 15.

Table 15 — Chemical composition requirements for nuts in preloaded assemblies based on product analysis

<table>
<thead>
<tr>
<th>Grade of nuts</th>
<th>Maximum content (% by mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>0.58</td>
</tr>
<tr>
<td>10 and 12</td>
<td>0.58</td>
</tr>
</tbody>
</table>

2.6.4 Dimensional tolerances

As a minimum, dimensional tolerances shall be in accordance with the corresponding standards which the bolts, nuts and washers are manufactured to.

2.7 Welding consumables

This section covers welding consumables, including electrodes, wires, rods and fluxes, used in arc welding.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-1, BS 5950-2, BS EN 440, BS EN 756, BS EN 758, BS EN 1597-1, BS EN 1668 and BS EN ISO 2560.

2.7.1 Mechanical properties

The mechanical properties of the all-weld metal shall be obtained through multi run technique.

NOTE Multi run technique shall be referred to BS EN 1597-1 or equivalent.

2.7.1.1 Strength

The nominal yield strength of the all-weld metal shall be in the range of 355 N/mm² to 690 N/mm².
2.7.1.2 Ductility

The elongation after fracture of the all-weld metal on proportional gauge length of 5 times the specimen diameter shall be at least 15 %.

NOTE Conversion of elongation values measured not based on proportional gauge length is necessary and shall be performed according to BS EN ISO 2566-1.

2.7.1.3 Impact toughness

As a minimum, the all-weld metal shall be able to absorb at least 27 J of impact energy at 20 °C.

NOTE Depending on other factors including the thickness and minimum service temperature, the impact toughness should also conform to the appropriate requirements as given in BS 5950-1.

2.8 Profiled steel sheets

This section covers profiled steel sheets with a thickness, exclusive of coatings, in the range of 0.7 mm to 5.0 mm for use in composite slabs through composite action.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-4, BS 5950-6, BS 5950-7, BS EN 10143 and BS EN 10326.

2.8.1 Manufacturing process

The profiled steel sheets shall be continuously hot-dip zinc-coated with structural quality.

2.8.2 Mechanical properties

2.8.2.1 Strength

The nominal yield strength shall be in the range of 220 N/mm² to 550 N/mm². The nominal tensile strength shall be in the range of 275 N/mm² to 600 N/mm².

2.8.3 Chemical composition

In general, based on ladle analysis, carbon content shall not exceed 0.25 % and content of each phosphorous and sulphur shall not exceed 0.12 % and 0.05 %, respectively.

2.8.4 Dimensional and mass tolerances

2.8.4.1 Dimensions

In general, the deviation in actual thickness from nominal plate thickness shall not exceed the larger of ± 0.1 mm and ± 10 %.

2.8.4.2 Mass

In general, the deviation in actual mass from mass computed using a density of 7850 kg/m³ shall be limited by the dimensional tolerances.
2.9 **Stud shear connectors**

This section covers headed stud shear connectors used in transmitting the longitudinal shear between concrete and steel in composite beams and slabs. The shank diameter shall be in the range of 10 mm to 25 mm. The head diameter shall be at least 1.5 times the shank diameter; whereas the head depth shall be at least 0.4 times the shank diameter.

NOTE References for material performance requirements in this section include, in alphanumerical order, BS 5950-3.1 and BS EN ISO 13918.

2.9.1 Manufacturing process

The stud shear connectors shall be made from mild steel or stainless steel.

2.9.2 Mechanical properties

2.9.2.1 Strength

The nominal tensile strength shall be at least 400 N/mm².

2.9.2.2 Ductility

The elongation after fracture on proportional gauge length shall be at least 14 %.

NOTE Conversion of elongation values measured not based on proportional gauge length is necessary and shall be performed according to BS EN ISO 2566-1.

2.9.3 Dimensional tolerances

As a minimum, dimensional tolerances shall be in accordance with the corresponding standards which the shear connectors are manufactured to.
Section 3
Quality Assurance requirements

3.1 Factory production control

3.2 Manufacturer test certificates
Quality assurance requirements

The actual performance and compliance of the alternative steel materials with the nominal specifications stipulated in their respective national standards and material performance requirements from Section 2 shall be substantiated by a quality assurance system acceptable to BCA.

A manufacturer with an acceptable quality assurance system shall establish a production control system attested with a certificate issued by a certification agency (see 3.1) and shall provide sufficient guarantee to the purchasers with appropriate test certificates (see 3.2).

3.1 Factory production control

The manufacturer shall establish, document and maintain a factory production control (FPC) system to ensure the conformity of the products to the nominal specifications.

Such system shall consist of written procedures, regular inspections and tests and/or assessments and the use of the results to control feedstock materials, equipment, personnel, the production process and the products, in accordance with the relevant performance requirements (see Section 2).

As a minimum, the production control system shall meet the requirements in 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5 and 3.1.6 through attestation by an independent third-party certification agency acceptable to or recognised by BCA on the basis of; first, initial inspection on the system after receiving and analyzing the complete set of manuals of production control system submitted by the manufacturers; second, continuous surveillance and assessment of the production control system through inspection carried out at least once a year.

Certificates of factory production control system, issued by the independent third-party certification agencies acceptable to or recognised by BCA, shall form the acceptable indicator for an attested factory production control system.

3.1.1 Feedstock materials

The source of feedstock and/or raw materials shall be well-documented for a period of at least 7 years to ensure the full traceability of the products.

The specifications of all incoming feedstock and/or raw materials and the relevant inspection scheme to ensure their conformity shall be documented in accordance with the manufacturer’s written procedures.

3.1.2 Equipment

All equipment used in the manufacturing process shall be regularly inspected and maintained to ensure consistency in the manufacturing process and the product quality; all weighing, measuring and testing equipment for quality control shall be in accordance with the standards listed in Appendix B or the equivalent standards, regularly inspected and calibrated to ensure the reliability and accuracy of results.

Such inspections, maintenances and calibrations shall be carried out and documented in accordance with the manufacturer’s written procedures.

3.1.3 Personnel

Qualifications of personnel involved in NDT, process affecting product quality and conformity, based on relevant education, training, skills and experience, shall be assessed and documented in the manufacturer’s written procedures.

The responsibilities of personnel managing, performing or verifying work affecting product quality and conformity, and their inter-relationship, shall be clearly defined.
3.1.4 Product testing

The manufacturer shall establish testing procedures to ensure conformity of the products to the nominal specifications. The testing shall be performed in accordance with the standards listed in Appendix B or the equivalent standards.

3.1.4.1 Initial type testing

Initial type testing shall be carried out under the sole responsibility of the manufacturer before the products are made available in the market and upon the introduction of changes to the manufacturing process which may affect the product characteristics. As a minimum, the initial type testing shall include the experimental and/or theoretical evaluation of the product characteristics corresponding to the relevant performance requirements (see Section 2).

3.1.4.2 Routine testing

Routine testing shall be carried out by the manufacturer in accordance with the manufacturer’s written procedures.

3.1.4.3 Specific testing

Specific testing, upon request at the time of order, shall be carried out by authorised inspection representative independent of the manufacturing department prior to delivery to ensure the products to be supplied conform to the nominal specifications and additional requirements made at the time of order.

3.1.5 Product marking

The products shall be properly marked using methods like painting, stamping, laser marking, bar coding, durable adhesive labels or attached tags with the product specifications, particulars of manufacturer and any other essential information. Information corresponding to the relevant material performance requirements given in Section 2 and Appendix B shall be attached in the form of test certificates (see 3.2).

For bolts to be used for structural purpose, every individual bolt must be properly marked to clearly indicate the grade.

3.1.6 Non-conforming products

The manufacturer shall establish appropriate actions to be taken against products not conforming to the nominal specifications. Occurrence of such non-conformity shall be documented in accordance with the manufacturer’s written procedures.

3.2 Manufacturer test certificates

Testing, including inspections, conducted by the manufacturers shall be substantiated by test certificates. As a minimum, a department independent from the production department, within the manufacturer’s organization, shall conduct the testing. Upon the request of the purchasers or BCA, certificates issued by an independent third party inspection agency shall also be produced. As a minimum, the manufacturers shall provide quality assurance with manufacturer test certificates containing information given in 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5 and 3.2.6.

3.2.1 Information of manufacturer

The manufacturer’s name, contact information and company registration number shall be indicated clearly in the test certificate.
3.2.2 Reference details

The number of purchase order, reference number and date of issue shall be indicated clearly in the test certificate.

3.2.3 Material specifications

The number of material standard including the standard for dimension and tolerance, and the grade, name or code of material supplied, and/or other useful information about the material supplied, shall be indicated clearly in the test certificate.

3.2.4 Information for traceability

The heat number, batch number of the feedstock materials and the quantity of the steel materials actually supplied to the purchaser shall be indicated clearly in the test certificate.

3.2.5 Test results

The test results, which are corresponding and conforming to the relevant material performance requirements (see Section 2 and Appendix B), shall be indicated clearly in the test certificate. Use of the test results of feedstock materials shall be clearly indicated, if any.

3.2.6 Authentication

The test certificate shall be authenticated with the manufacturer’s company stamp, and by the stockist or trader, if appropriate.
Section 4
Classification of Alternative Steel Materials

4.1 Adequacy assessment
4.2 Reliability assessment
4.3 Classification procedure
4.4 Special case
Classification of alternative steel materials is necessary to determine whether these materials shall be allowed in the structural design based on BS 5950 with or without any restriction. The adequacy and reliability of alternative steel materials shall be verified against the material performance requirements (see Section 2) as well as the quality assurance requirements (see Section 3), respectively, in the entire process of classification.

4.1 Adequacy assessment

The adequacy of alternative steel materials shall be verified against the material performance requirements. Certification and material testing are the two possible methods to verify the adequacy of alternative steel materials.

4.1.1 Certification

Certification is the process of rigorous evaluation of the specifications given in the British/European, American, Japanese, Australian/New Zealand and Chinese material standards, against the essential material performance requirements. The purpose of certification is to derive lists of certified steel materials as defined in 1.3.5. Only those materials with their specifications complying with the relevant material performance requirements are included in the lists.

4.1.2 Material testing

Material testing is the process of demonstrating the adequacy of non-certified steel materials, during the design stage prior to material procurement, through appropriate material sampling and test methods as given in Appendix B.

NOTE Material testing for the purpose of adequacy assessment during the design stage shall not exempt the end purchasers from performing the obligatory inspection and testing in accordance with appropriate regulations during procurement and execution.

4.2 Reliability assessment

The reliability of alternative steel materials shall be verified against the quality assurance requirements. Two types of certificates are required to verify the reliability of alternative steel materials. Failure of the manufacturer to produce either one of the certificates given in 4.2.1 or 4.2.2 is considered not meeting the quality assurance requirements.

4.2.1 Factory production control certificates

The manufacturer shall produce a factory production control (FPC) certificate issued by an independent third-party certification agency acceptable to or recognised by BCA as an attestation of the factory production control system in meeting the requirements given in 3.1.

The purchaser shall obtain a validated copy of such certificate directly from the manufacturer or through the stockist or trader.

4.2.2 Manufacturer test certificates

The manufacturer shall produce an authenticated test certificate (see 3.2) as an additional layer of quality assurance on the alternative steel materials delivered.

The purchaser shall obtain such certificate directly from the manufacturer or a validated copy of such certificate through the stockist or trader. In both cases, the quantity of steel materials actually supplied to the purchaser shall be clearly indicated.
4.3 Classification procedure

The complete classification procedure of alternative steel materials shall follow the flow represented by the overall framework shown in Figure 1.

Figure 1 — Overall framework for classification of alternative steel materials

Alternative steel materials shall be classified based on the verification against material performance requirements and quality assurance requirements, see Figure 1, into three classes – Class 1, Class 2 and Class 3, as defined in 4.3.1, 4.3.2 and 4.3.3.

4.3.1 Class 1 alternative steel materials

Class 1 alternative steel materials are certified steel materials manufactured with approved quality assurance.

NOTE Only materials in the list of certified materials can be qualified as Class 1 alternative steel materials, depending on the quality assurance provided by the manufacturers.

4.3.2 Class 2 alternative steel materials

Class 2 alternative steel materials are non-certified steel materials which meet the material performance requirements through material testing, and are manufactured with approved quality assurance.

NOTE Materials not in the list of certified materials can only be qualified as Class 2 alternative steel materials, depending on the quality assurance provided by the manufacturers.

4.3.3 Class 3 alternative steel materials

Class 3 alternative steel materials are steel materials which do not meet at least one of the two requirements – material performance requirements and quality assurance requirements.

4.4 Special case

As an alternative to 4.3 and on a case-by-case basis subject to approval by BCA, the steel material may be treated as Class 2 status if its adequacy and reliability can be guaranteed through rigorous material control and testing plans on site. As a minimum, such written plan should comprise at least 100% visual inspection and non-destructive testing for delivery conditions and dimensional control, 100% material testing for all batches and/or heat numbers (see Appendix B) by a SINGLAS accredited laboratory or other laboratory accredited under a mutual recognition agreement with SINGLAS and a material compliance report from an independent expert consultant.
Section 5
Design recommendations

5.1 Design recommendations on Class 1 alternative steel materials
5.2 Design recommendations on Class 2 alternative steel materials
5.3 Design recommendations on Class 3 alternative steel materials
5.4 Other properties
This section covers the design recommendations on the use of three different classes of alternative steel materials, as defined in 4.3.1, 4.3.2 and 4.3.3, to BS 5950. The major design parameters and equations are given in 5.1, 5.2 and 5.3 whereas other properties which are common to all three classes of alternative steel materials are given in 5.4.

5.1 Design recommendations on Class 1 alternative steel materials

This section covers the design guide on Class 1 alternative steel materials, which are in the lists of certified steel materials in Appendix A and are in compliance with the quality assurance requirements (see Section 3).

5.1.1 Class 1 structural steel

This section covers the design strength of Class 1 steel plates, hot rolled sections, hollow sections and steel for cold forming.

The design strength \(p_y \) of Class 1 structural steel shall be computed using the following equation.

Design strength:

\[
p_y = \frac{Y_s}{1.0} \leq \frac{U_s}{1.2} \text{ or } 460 \text{ N/mm}^2;
\]

or

\[
p_y = \frac{Y_s}{1.0} \leq 690 \text{ N/mm}^2 \text{ for steel plates with nominal yield strength of at least 460 N/mm}^2, \text{ where plastic design shall not be allowed.}
\]

The design strengths corresponding to different steel grades are given in Table 16, Table 17, Table 18, Table 19 and Table 20.

NOTE For rolled sections, the specified thickness of the thickest element of the cross-section shall be used.

Table 16 — Design strengths of British/European (BS EN) structural steels

<table>
<thead>
<tr>
<th>Grade</th>
<th>Design strength (p_y) (N/mm²), for thickness (mm) less than or equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>S235</td>
<td>235</td>
</tr>
<tr>
<td>S275</td>
<td>275</td>
</tr>
<tr>
<td>S355</td>
<td>355</td>
</tr>
<tr>
<td>S420</td>
<td>420</td>
</tr>
<tr>
<td>S460</td>
<td>460</td>
</tr>
<tr>
<td>S460a</td>
<td>460</td>
</tr>
<tr>
<td>S500a</td>
<td>500</td>
</tr>
<tr>
<td>S550a</td>
<td>550</td>
</tr>
<tr>
<td>S620a</td>
<td>620</td>
</tr>
<tr>
<td>S690a</td>
<td>690</td>
</tr>
</tbody>
</table>

a) Quenched and tempered steel only, plastic design shall not be allowed.
Table 17 — Design strengths of American (ASTM and API) structural steels

<table>
<thead>
<tr>
<th>Designation</th>
<th>Grade in metric [imperial]</th>
<th>Design strength (p_y) (N/mm²), for thickness (mm) less than or equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>ASTM structural steels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 36</td>
<td>250 [36]</td>
<td>250</td>
</tr>
<tr>
<td>A 242</td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td>A 501</td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td>A 572</td>
<td>290 [42]</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>380 [55]</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>415 [60]</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>450 [65]</td>
<td>450</td>
</tr>
<tr>
<td>A 588</td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td>A 709</td>
<td>250 [36]</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>485 [70]*</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>690 [100]*</td>
<td>690</td>
</tr>
<tr>
<td>A 792</td>
<td>230 [33]</td>
<td>230</td>
</tr>
<tr>
<td>A 852</td>
<td>485 [70]*</td>
<td>485</td>
</tr>
<tr>
<td>A 875</td>
<td>230 [33]</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>255 [37]</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>275 [40]</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>410 [60]</td>
<td>410</td>
</tr>
<tr>
<td>A 913</td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>415 [60]</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>450 [65]</td>
<td>450</td>
</tr>
<tr>
<td>A 945</td>
<td>345 [50]</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>450 [65]</td>
<td>450</td>
</tr>
<tr>
<td>A 992</td>
<td>345 [50]</td>
<td>345</td>
</tr>
</tbody>
</table>
Table 18 — Design strengths of Japanese (JIS) structural steels

<table>
<thead>
<tr>
<th>Grade</th>
<th>Design strength p_y (N/mm²), for thickness (mm) less than or equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>SM 490A, B</td>
<td>325</td>
</tr>
<tr>
<td>SM 490C</td>
<td>325</td>
</tr>
<tr>
<td>SM 490YA,YB</td>
<td>365</td>
</tr>
<tr>
<td>SM 520B, C</td>
<td>365</td>
</tr>
<tr>
<td>SM 570</td>
<td>460</td>
</tr>
<tr>
<td>SMA 490BW,BP</td>
<td>365</td>
</tr>
</tbody>
</table>
Table 19 — Design strengths of Australian/New Zealand (AS/NZS) structural steels

<table>
<thead>
<tr>
<th>Grade</th>
<th>Design strength σ_y (N/mm²), for thickness (mm) less than or equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>SMA 490CW, CP</td>
<td>365</td>
</tr>
<tr>
<td>SMA 570W</td>
<td>460</td>
</tr>
<tr>
<td>SN 400 B, C</td>
<td>235</td>
</tr>
<tr>
<td>SN 490 B, C</td>
<td>325</td>
</tr>
<tr>
<td>SSC 400</td>
<td>245</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>50</th>
<th>80</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>3678-250-L15</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>3678-300-L15</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>3678-400-L15</td>
<td>400</td>
<td>400</td>
<td>380</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>-</td>
</tr>
<tr>
<td>3678-450-L15</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>420</td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3679-250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>230</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3679-350</td>
<td>350</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>330</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3679-400</td>
<td>400</td>
<td>400</td>
<td>380</td>
<td>380</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1163-C250</td>
<td>250</td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1163-C275</td>
<td>275</td>
<td>275</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1163-C300</td>
<td>300</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1163-C350</td>
<td>350</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1163-C400</td>
<td>400</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1163-C450</td>
<td>450</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1397-G250</td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1397-G300</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1397-G350</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1397-G450</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1397-G500</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1397-G550</td>
<td>550</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1595-C220</td>
<td>210</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1595-C260</td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1595-C350</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 20 — Design strengths of Chinese (GB) structural steels

<table>
<thead>
<tr>
<th>Grade</th>
<th>Design strength p_y (N/mm²), for thickness (mm) less than or equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Q235</td>
<td>235</td>
</tr>
<tr>
<td>Q275</td>
<td>275</td>
</tr>
<tr>
<td>Q295</td>
<td>295</td>
</tr>
<tr>
<td>Q345a</td>
<td>345</td>
</tr>
<tr>
<td>Q345b</td>
<td>325</td>
</tr>
<tr>
<td>Q355c</td>
<td>355</td>
</tr>
<tr>
<td>Q390</td>
<td>390</td>
</tr>
<tr>
<td>Q420</td>
<td>420</td>
</tr>
<tr>
<td>Q460</td>
<td>460</td>
</tr>
</tbody>
</table>

a) Not applicable to Q345 for seamless hollow sections manufactured to GB/T 8162.

b) Only applicable to Q345 for seamless hollow sections manufactured to GB/T 8162.
c) Only applicable to weathering steel Q355NH manufactured to GB/T 4172.

5.1.2 Class 1 non-preloaded bolted connections

This section covers the design strengths of Class 1 non-preloaded bolts and the recommended combinations of matching components in non-preloaded bolting assemblies.

The design strengths corresponding to different bolt grades are given in Table 21, Table 22, Table 23, Table 24 and Table 25.

Table 21 — Design strengths of British/European (BS EN) non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength p_s (N/mm²)</th>
<th>Bearing strength p_{bb} (N/mm²)</th>
<th>Tension strength p_t (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>160</td>
<td>460</td>
<td>240</td>
</tr>
<tr>
<td>8.8</td>
<td>375</td>
<td>1000</td>
<td>560</td>
</tr>
<tr>
<td>10.9</td>
<td>400</td>
<td>1300</td>
<td>700</td>
</tr>
</tbody>
</table>

NOTE The design shear strength p_s, bearing strength p_{bb} and tension strength p_t is taken as 0.4U_u, 0.7($U_u + Y_y$) and 0.7U_u respectively, where U_u and Y_y are the minimum tensile and yield strength of the bolt material.
Table 22 — Design strengths of American (ASTM) non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength (p_s) (N/mm(^2))</th>
<th>Bearing strength (p_{bb}) (N/mm(^2))</th>
<th>Tension strength (p_t) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 307</td>
<td>165</td>
<td>289</td>
<td>289</td>
</tr>
<tr>
<td>Grade B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM A 325</td>
<td>290</td>
<td>899</td>
<td>507</td>
</tr>
<tr>
<td>ASTM A 449</td>
<td>248</td>
<td>714</td>
<td>434</td>
</tr>
<tr>
<td>ASTM A 490</td>
<td>416</td>
<td>1386</td>
<td>728</td>
</tr>
</tbody>
</table>

Table 23 — Design strengths of Japanese (JIS) non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength (p_s) (N/mm(^2))</th>
<th>Bearing strength (p_{bb}) (N/mm(^2))</th>
<th>Tension strength (p_t) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>120</td>
<td>336</td>
<td>210</td>
</tr>
<tr>
<td>4.6, 4.8</td>
<td>160</td>
<td>448</td>
<td>280</td>
</tr>
<tr>
<td>5.6, 5.8</td>
<td>200</td>
<td>560</td>
<td>350</td>
</tr>
<tr>
<td>6.8</td>
<td>240</td>
<td>756</td>
<td>420</td>
</tr>
<tr>
<td>8.8</td>
<td>320</td>
<td>1008</td>
<td>560</td>
</tr>
<tr>
<td>9.8</td>
<td>360</td>
<td>1134</td>
<td>630</td>
</tr>
<tr>
<td>10.9</td>
<td>400</td>
<td>1330</td>
<td>700</td>
</tr>
<tr>
<td>12.9</td>
<td>480</td>
<td>1596</td>
<td>840</td>
</tr>
</tbody>
</table>

Table 24 — Design strengths of Australian/New Zealand (AS) non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength (p_s) (N/mm(^2))</th>
<th>Bearing strength (p_{bb}) (N/mm(^2))</th>
<th>Tension strength (p_t) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>120</td>
<td>336</td>
<td>210</td>
</tr>
<tr>
<td>4.8</td>
<td>160</td>
<td>504</td>
<td>280</td>
</tr>
<tr>
<td>5.8</td>
<td>200</td>
<td>630</td>
<td>350</td>
</tr>
<tr>
<td>6.8</td>
<td>240</td>
<td>756</td>
<td>420</td>
</tr>
<tr>
<td>8.8</td>
<td>320</td>
<td>1008</td>
<td>560</td>
</tr>
<tr>
<td>10.8</td>
<td>400</td>
<td>1260</td>
<td>700</td>
</tr>
</tbody>
</table>
Table 25 — Design strengths of Chinese (GB) non-preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength (p_s) (N/mm²)</th>
<th>Bearing strength (p_{bb}) (N/mm²)</th>
<th>Tension strength (p_t) (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>125</td>
<td>320</td>
<td>200</td>
</tr>
<tr>
<td>8.8</td>
<td>250</td>
<td>720</td>
<td>400</td>
</tr>
<tr>
<td>10.9</td>
<td>310</td>
<td>930</td>
<td>500</td>
</tr>
</tbody>
</table>

The recommended combinations of matching components in non-preloaded bolting assemblies are given in Table 26, Table 27, Table 28, Table 29 and Table 30.

Table 26 — Recommended combinations of British/European (BS EN) non-preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>4 for (d > M16); 5 for (d \leq M16)</td>
<td>100 HV</td>
</tr>
<tr>
<td>8.8</td>
<td>8; 10 for overtapped nut thread</td>
<td></td>
</tr>
<tr>
<td>10.9</td>
<td>10; 12 for overtapped nut thread</td>
<td></td>
</tr>
</tbody>
</table>

Table 27 — Recommended combinations of American (ASTM) non-preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Class of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 307 Grade B</td>
<td>4 to 10, 12, 16</td>
<td>Type 1 and Type 3</td>
</tr>
<tr>
<td>ASTM A 325</td>
<td>8S, 8S3, 10S (ASTM A 563)</td>
<td></td>
</tr>
<tr>
<td>ASTM A 449</td>
<td>8S, 9 to 12 (ASTM A 563)</td>
<td></td>
</tr>
<tr>
<td>ASTM A 490</td>
<td>8S, 10 to 12 (ASTM A 563)</td>
<td></td>
</tr>
</tbody>
</table>

Table 28 — Recommended combinations of Japanese (JIS) non-preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Class of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6, 4.6, 4.8 for (d > M16)</td>
<td>1 for (d > M16)</td>
<td>Product Grade A and C</td>
</tr>
<tr>
<td>3.6, 4.6, 4.8 for (d \leq M16)</td>
<td>5 for (d \leq M39)</td>
<td></td>
</tr>
<tr>
<td>5.6, 5.8 for (d \leq M39)</td>
<td>5 for (d \leq M39)</td>
<td></td>
</tr>
<tr>
<td>6.8 for (d \leq M39)</td>
<td>6 for (d \leq M39)</td>
<td></td>
</tr>
<tr>
<td>8.8 for (d \leq M39)</td>
<td>8 for (d \leq M39)</td>
<td>8 for (d > M16); 8 for (d \leq M39)</td>
</tr>
<tr>
<td>9.8 for (d \leq M16)</td>
<td>-</td>
<td>9 for (d \leq M16)</td>
</tr>
<tr>
<td>10.9 for (d \leq M39)</td>
<td>10 for (d \leq M39)</td>
<td></td>
</tr>
<tr>
<td>12.9 for (d \leq M39)</td>
<td>12 for (d \leq M16)</td>
<td>12 for (d \leq M39)</td>
</tr>
</tbody>
</table>
Table 29 — Recommended combinations of Australian/New Zealand (AS/NZS) non-preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Class of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>5</td>
<td>AS/NZS 1252</td>
</tr>
<tr>
<td>6.8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 30 — Recommended combinations of Chinese (GB) non-preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>4 for $d > M16$; 5 for $d \leq M16$</td>
<td>100 HV</td>
</tr>
<tr>
<td>8.8</td>
<td>8; 10 for overtapped nut thread</td>
<td></td>
</tr>
<tr>
<td>10.9</td>
<td>10; 12 for overtapped nut thread</td>
<td></td>
</tr>
</tbody>
</table>

5.1.3 Class 1 preloaded bolted connections

This section covers the design strengths of Class 1 preloaded bolts and the recommended combinations of matching components in preloaded bolting assemblies.

The design strengths corresponding to different bolt grades are given in Table 31, Table 32, Table 33, Table 34 and Table 35.

Table 31 — Design strengths of British/European (BS EN) preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength p_s (N/mm²)</th>
<th>Tension strength p_t (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>375</td>
<td>560</td>
</tr>
<tr>
<td>10.9</td>
<td>400</td>
<td>700</td>
</tr>
</tbody>
</table>

NOTE The design shear strength p_s and tension strength p_t is taken as $0.4U_b$ and $0.7U_y$ respectively, where U_b and Y_y are the minimum tensile and yield strength of the bolt material.
Table 32 — Design strengths of American (ASTM) preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength p_s (N/mm²)</th>
<th>Tension strength p_t (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 354 Grade BC</td>
<td>344 for $d \leq 62.5$ mm;</td>
<td>603 for $d \leq 62.5$ mm;</td>
</tr>
<tr>
<td></td>
<td>316 for $d > 62.5$ mm</td>
<td>555 for $d > 62.5$ mm</td>
</tr>
<tr>
<td>ASTM A 354 Grade BD</td>
<td>413 for $d \leq 62.5$ mm;</td>
<td>723 for $d \leq 62.5$ mm;</td>
</tr>
<tr>
<td></td>
<td>386 for $d > 62.5$ mm</td>
<td>675 for $d > 62.5$ mm</td>
</tr>
<tr>
<td>ASTM A 325 Type 1</td>
<td>290</td>
<td>507</td>
</tr>
<tr>
<td>ASTM A 490</td>
<td>416</td>
<td>728</td>
</tr>
</tbody>
</table>

Table 33 — Design strengths of Japanese (JIS) preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength p_s (N/mm²)</th>
<th>Tension strength p_t (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8T</td>
<td>387</td>
<td>571</td>
</tr>
<tr>
<td>F10T</td>
<td>484</td>
<td>713</td>
</tr>
<tr>
<td>F11T</td>
<td>532</td>
<td>785</td>
</tr>
</tbody>
</table>

Table 34 — Design strengths of Australian/New Zealand (AS) preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength p_s (N/mm²)</th>
<th>Tension strength p_t (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>320</td>
<td>560</td>
</tr>
<tr>
<td>10.9</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>12.9</td>
<td>480</td>
<td>840</td>
</tr>
</tbody>
</table>

Table 35 — Design strengths of Chinese (GB) preloaded bolts

<table>
<thead>
<tr>
<th>Grade</th>
<th>Shear strength p_s (N/mm²)</th>
<th>Tension strength p_t (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>250</td>
<td>400</td>
</tr>
<tr>
<td>10.9</td>
<td>310</td>
<td>500</td>
</tr>
</tbody>
</table>

The recommended combinations of matching components in preloaded bolting assemblies are given in Table 36, Table 37, Table 38, Table 39 and Table 40.

Table 36 — Recommended combinations of British/European (BS EN) preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>8</td>
<td>300 – 370 HV</td>
</tr>
<tr>
<td>10.9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Table 37 — Recommended combinations of American (ASTM) preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Class 8S3-C or 8S3-D</td>
<td>(F436) Type 1 or Type 3</td>
</tr>
</tbody>
</table>

Table 38 — Recommended combinations of Japanese (JIS) preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8T (Class 1 set)</td>
<td>F10</td>
<td>F35</td>
</tr>
<tr>
<td>F10T (Class 2 set)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11T (Class 3 set)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 39 — Recommended combinations of Australian/New Zealand (AS/NZS) preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>8</td>
<td>AS/NZS 1252</td>
</tr>
<tr>
<td>10.9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12.9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Table 40 — Recommended combinations of Chinese (GB) preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Grade of bolt</th>
<th>Grade of nut</th>
<th>Grade of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8S*</td>
<td>8H</td>
<td>35 – 45 HRC</td>
</tr>
<tr>
<td>10.9S*</td>
<td>10H</td>
<td></td>
</tr>
</tbody>
</table>

a) Equivalent to grades 8.8 and 10.9 in Table 31.

5.1.4 Class 1 fillet welds

This section covers the design strength fillet welds made of Class 1 welding consumables.

The design strengths of fillet welds corresponding to different welding consumable grades are given in Table 41, Table 42, Table 43, Table 44 and Table 45.

Table 41 — Design strengths of fillet weld made of British/European (BS EN) welding consumables

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength U_s (N/mm²)</th>
<th>Design strength p_w (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>440</td>
<td>$0.50U_s \leq 0.55U_s$</td>
</tr>
<tr>
<td>38</td>
<td>470</td>
<td>$U_s =$ tensile strength of parent metal</td>
</tr>
<tr>
<td>42</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>560</td>
<td></td>
</tr>
</tbody>
</table>
Table 42 — Design strengths of fillet weld made of American (AWS) welding consumables

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (U_e) (N/mm(^2))</th>
<th>Design strength (p_w) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>E49xx</td>
<td>490</td>
<td>245</td>
</tr>
</tbody>
</table>

Table 43 — Design strengths of fillet weld made of Japanese (JIS) welding consumables

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (U_e) (N/mm(^2))</th>
<th>Design strength (p_w) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>D43xx</td>
<td>450</td>
<td>225</td>
</tr>
<tr>
<td>D50xx</td>
<td>510</td>
<td>255</td>
</tr>
<tr>
<td>D53xx</td>
<td>600</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 44 — Design strengths of fillet weld made of Australian/New Zealand (AS) welding consumables

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (U_e) (N/mm(^2))</th>
<th>Design strength (p_w) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>E43xx</td>
<td>430</td>
<td>215</td>
</tr>
<tr>
<td>E49xx</td>
<td>490</td>
<td>245</td>
</tr>
<tr>
<td>E55xx</td>
<td>550</td>
<td>275</td>
</tr>
<tr>
<td>E57xx</td>
<td>570</td>
<td>285</td>
</tr>
</tbody>
</table>

Table 45 — Design strengths of fillet weld made of Chinese (GB) welding consumables

<table>
<thead>
<tr>
<th>Grade</th>
<th>Tensile strength (U_e) (N/mm(^2))</th>
<th>Design strength (p_w) (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>420</td>
<td>210</td>
</tr>
<tr>
<td>50</td>
<td>490</td>
<td>245</td>
</tr>
<tr>
<td>55</td>
<td>540</td>
<td>270</td>
</tr>
</tbody>
</table>

5.1.5 Class 1 profiled steel sheets

This section covers the design strength of Class 1 profiled steel sheets.

The design strengths corresponding to different steel grades are given in Table 46, Table 47, Table 48, Table 49 and Table 50.
Table 46 — Design strengths of British/European (BS EN) profiled steel sheets

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield strength Y_s (N/mm²)</th>
<th>Tensile strength U_s (N/mm²)</th>
<th>Design strength p_y (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S220GD</td>
<td>220</td>
<td>300</td>
<td>BS 5950-4</td>
</tr>
<tr>
<td>S250GD</td>
<td>250</td>
<td>330</td>
<td>BS 5950-6</td>
</tr>
<tr>
<td>S280GD</td>
<td>280</td>
<td>360</td>
<td>$0.93U_s$</td>
</tr>
<tr>
<td>S320GD</td>
<td>320</td>
<td>390</td>
<td>$Y_s \leq 0.84U_s$</td>
</tr>
<tr>
<td>S350GD</td>
<td>350</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>S550GD</td>
<td>550</td>
<td>560</td>
<td></td>
</tr>
</tbody>
</table>

Table 47 — Design strengths of American (ASTM) profiled steel sheets

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield strength Y_s (N/mm²)</th>
<th>Tensile strength U_s (N/mm²)</th>
<th>Design strength p_y (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>210</td>
<td>320</td>
<td>BS 5950-4</td>
</tr>
<tr>
<td>240</td>
<td>240</td>
<td>340</td>
<td>BS 5950-6</td>
</tr>
<tr>
<td>275</td>
<td>275</td>
<td>380</td>
<td>$0.93U_s$</td>
</tr>
<tr>
<td>280</td>
<td>280</td>
<td>370</td>
<td>$Y_s \leq 0.84U_s$</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>340</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>410</td>
<td>480</td>
<td></td>
</tr>
</tbody>
</table>

Table 48 — Design strengths of Japanese (JIS) profiled steel sheets

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield strength Y_s (N/mm²)</th>
<th>Tensile strength U_s (N/mm²)</th>
<th>Design strength p_y (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGH340, SGC340</td>
<td>245</td>
<td>340</td>
<td>BS 5950-4</td>
</tr>
<tr>
<td>SGH400, SGC400</td>
<td>295</td>
<td>400</td>
<td>BS 5950-6</td>
</tr>
<tr>
<td>SGH440, SGC440</td>
<td>335</td>
<td>440</td>
<td>$0.93U_s$</td>
</tr>
<tr>
<td>SGH490, SGC490</td>
<td>365</td>
<td>490</td>
<td>$Y_s \leq 0.84U_s$</td>
</tr>
<tr>
<td>SGH540</td>
<td>400</td>
<td>540</td>
<td></td>
</tr>
</tbody>
</table>
Table 49 — Design strengths of Australian/New Zealand (AS/NZS) profiled steel sheets

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield strength Y_s (N/mm2)</th>
<th>Tensile strength U_s (N/mm2)</th>
<th>Design strength p_y (N/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>320</td>
<td>BS 5950-4 BS 5950-6</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>420</td>
<td>$0.93U_s$</td>
</tr>
<tr>
<td>450</td>
<td>450</td>
<td>480</td>
<td>$Y_s \leq 0.84U_s$</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>550</td>
<td>550</td>
<td></td>
</tr>
</tbody>
</table>

Table 50 — Design strengths of Chinese (GB) profiled steel sheets

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield strength Y_s (N/mm2)</th>
<th>Tensile strength U_s (N/mm2)</th>
<th>Design strength p_y (N/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>220</td>
<td>300</td>
<td>BS 5950-4 BS 5950-6</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>280</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>320</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>420</td>
<td>$0.93U_s$</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>470</td>
<td>$Y_s \leq 0.84U_s$</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>550</td>
<td>560</td>
<td></td>
</tr>
</tbody>
</table>

5.1.6 Class 1 stud shear connectors

This section covers the characteristic resistance of Class 1 stud shear connectors.

The characteristic resistance of stud shear connectors shall be computed using the following equation.

Characteristic resistance: $Q_k = 0.20\alpha d^2 \cdot \sqrt{0.8f_{cu}E_c} \leq 0.8f_u \cdot \frac{\pi d^2}{4}$

where $\alpha = \min\left(\frac{h}{d} + 1, 2\right)$ for $\frac{h}{d} \geq 3$;

h = overall as-welded height of stud shear connector;
d = shank diameter of stud shear connector;
f_{cu} = cube compressive strength of concrete;
E_c = modulus of elasticity of concrete;
f_u = tensile strength of stud shear connector, but not greater than 450 N/mm2.

The tensile strengths of stud shear connectors manufactured to EN, ASTM, JIS, AS/NZS and GB are given in Table 51.
Table 51 — Tensile strengths of British/European (BS EN), American (AWS), Japanese (JIS), Australian/New Zealand (AS/NZS) and Chinese (GB) stud shear connectors

<table>
<thead>
<tr>
<th>Material standards</th>
<th>Tensile strength f_u (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS EN ISO 13918</td>
<td>450</td>
</tr>
<tr>
<td>AWS D 1.1 (Type B)</td>
<td>450</td>
</tr>
<tr>
<td>JIS B 1198</td>
<td>400</td>
</tr>
<tr>
<td>AS/NZS 1554.2</td>
<td>410</td>
</tr>
<tr>
<td>GB/T 10433</td>
<td>400</td>
</tr>
</tbody>
</table>

5.2 Design recommendations on Class 2 alternative steel materials

This section covers the design guide on Class 2 alternative steel materials, which are not in the lists of certified steel materials (see Appendix A) but are in compliance with both the material performance requirements (see Section 2) through material testing and quality assurance requirements (see Section 3).

5.2.1 Class 2 structural steel

This section covers the design strength of Class 2 steel plates, hot rolled sections, hollow sections and steel for cold forming.

The basic design strength p_{yo} corresponding to the thickness not greater than 16 mm shall be computed using the following equation.

Basic design strength: $p_{yo} = \frac{Y_s}{1.1} \leq \frac{U_s}{1.3} \text{ or } 460 \text{ N/mm}^2$

The design strengths corresponding to different thickness are given in Table 52.

Table 52 — Design strengths of Class 2 structural steels

| Design strength p_{yo} for thickness a (mm) less than or equal to $| 16$ | 40 | 63 | 80 | 100 | 150 |
|--------------------------------|----|----|----|-----|-----|
| $p_{yo} = \frac{Y_s}{1.1}$ | $0.95p_{yo}$ | $0.92p_{yo}$ | $0.90p_{yo}$ | $0.85p_{yo}$ | $0.80p_{yo}$ |
| $\leq \frac{U_s}{1.3}$ or 460 N/mm² | |

a) For rolled sections, used the specified thickness of the thickest element of the cross-section.

5.2.2 Class 2 non-preloaded bolted connections

This section covers the design strengths of Class 2 non-preloaded bolts and the recommended combinations of matching components in non-preloaded bolting assemblies.

The design strengths corresponding to different bolt grades are given in Table 53.
Table 53 — Design strengths of Class 2 non-preloaded bolts

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Yield strength Y_b</th>
<th>Shear strength p_s</th>
<th>Bearing strength p_{bn}</th>
<th>Tension strength p_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_b \leq 1000$ N/mm2</td>
<td>Y_b</td>
<td>$0.3U_b$</td>
<td>$0.5(U_b + Y_b)$</td>
<td>$0.5U_b \leq Y_b$</td>
</tr>
</tbody>
</table>

The recommended combinations of matching components in non-preloaded bolting assemblies are given in Table 54.

Table 54 — Recommended combinations of Class 2 non-preloaded bolting assemblies

<table>
<thead>
<tr>
<th>Tensile strength of bolt $U_b \leq 1000$ N/mm2</th>
<th>Proof load of nut</th>
<th>Hardness of washer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_b \geq 300$ HV (or equivalent hardness)</td>
<td>$\geq U_b$</td>
<td>≥ 100 HV (or equivalent hardness)</td>
</tr>
</tbody>
</table>

5.2.3 Class 2 preloaded bolted connections

This section covers the design strengths of Class 2 preloaded bolts and the recommended combinations of matching components in preloaded bolting assemblies.

The design strengths corresponding to different bolt grades are given in Table 55.

Table 55 — Design strengths of Class 2 preloaded bolts

<table>
<thead>
<tr>
<th>Tensile strength $U_b \leq 1000$ N/mm2</th>
<th>Yield strength Y_b</th>
<th>Shear strength p_s</th>
<th>Tension strength p_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_b \leq 1000$ N/mm2</td>
<td>Y_b</td>
<td>$0.3U_b$</td>
<td>$0.5U_b \leq Y_b$</td>
</tr>
</tbody>
</table>

The recommended combinations of matching components in preloaded bolting assemblies are given in Table 56.

Table 56 — Recommended combinations of Class 2 preloaded bolting assemblies

| Tensile strength of bolt $U_b \leq 1000$ N/mm2 | Proof load of nut $\geq U_b$ | Hardness of washer ≥ 300 HV (or equivalent hardness) |

5.2.4 Class 2 fillet welds

This section covers the design strength fillet welds made of Class 2 welding consumables.

The design strength of fillet weld shall be computed using the following equation.

Design strength of fillet weld: $p_w = 0.4U_w \leq 0.45U_b$

where $U_w =$ tensile strength of all-weld metal, but not greater than 550 N/mm2
$U_b =$ tensile strength of parent metal
5.2.5 Class 2 profiled steel sheets

This section covers the design strength of Class 2 profiled steel sheets.

The design strength of profiled steel sheets shall be computed using the following equations.

Design strength: \(p_y = 0.85 Y_s \) in design to BS 5950-4
\[p_y = 0.9 Y_s \leq 0.75 U_s \] in design to BS 5950-6

where \(Y_s \) = yield strength of profiled steel sheets, and
\(U_s \) = tensile strength of profiled steel sheets, but not greater than 450 N/mm²

5.2.6 Class 2 stud shear connectors

This section covers the characteristic resistance of Class 2 stud shear connectors.

The characteristic resistance of stud shear connectors shall be computed using the following equation.

Characteristic resistance: \(Q_c = 0.25 \alpha d^2 \cdot \sqrt{0.8 f_{cu} E_c} \leq 0.6 f_u \cdot \frac{\pi d^2}{4} \)

where \(\alpha = \frac{h}{d} + 1 \leq 1 \) for \(\frac{h}{d} \geq 8 \);
\(h \) = overall as-welded height of stud shear connector;
\(d \) = shank diameter of stud shear connector;
\(f_{cu} \) = cube compressive strength of concrete;
\(E_c \) = modulus of elasticity of concrete;
\(f_u \) = tensile strength of stud shear connector, but not greater than 450 N/mm².

5.3 Design recommendations on Class 3 alternative steel materials

This section covers the design guide on Class 3 alternative steel materials, which are not in compliance with at least one of the material performance requirements (see Section 2) or quality assurance requirements (see Section 3).

5.3.1 Class 3 structural steel

This section covers the design strength of Class 3 steel plates, hot rolled sections, hollow sections and steel for cold forming.

The use of Class 3 structural steel is to be restricted to non-structural purpose. The basic design strength \(p_{yo} \) corresponding to the thickness not greater than 16 mm shall be taken as 170 N/mm².

The design strengths corresponding to different thickness are given in Table 57.

| Design strength \(p_y \) (N/mm²), for thickness* (mm) less than or equal to |
|-----------------------|--------|--------|--------|--------|--------|
| 16 | 40 | 63 | 80 | 100 | 150 |
| 170 | 160 | 155 | 150 | 145 | 135 |

a) For rolled sections, used the specified thickness of the thickest element of the cross-section.
5.3.2 **Class 3 non-preloaded bolted connections**
Structural connections shall not be made of Class 3 steel materials.

5.3.3 **Class 3 preloaded bolted connections**
Structural connections shall not be made of Class 3 steel materials.

5.3.4 **Class 3 fillet welds**
Structural connections shall not be made of Class 3 steel materials.

5.3.5 **Class 3 profiled steel sheets**
This section covers the design strength of Class 3 profiled steel sheets.
The design strength of profiled steel sheets shall be taken as 150 N/mm².

5.3.6 **Class 3 stud shear connectors**
Structural connections shall not be made of Class 3 steel materials.

5.4 **Other properties**

Unless otherwise stated, the following design values shall be used for steel materials wherever applicable.

- Modulus of elasticity: $E = 205 \, 000 \, \text{N/mm}^2$
- Shear modulus: $G = \frac{E}{2(1 + \nu)}$
- Poisson’s ratio: $\nu = 0.3$
- Coefficient of linear thermal expansion (in the ambient temperature range): $\alpha = 12 \times 10^{-6} \, \text{per} \, ^{\circ}\text{C}$
- Density: $\rho = 7850 \, \text{kg/m}^3$
Appendix A Lists of Certified Steel Materials
Appendix B Testing of Steel Materials
Appendix C Standards for Reference

Appendix A Lists of certified steel materials

A.1 Certified British/European steel materials
A.2 Certified American steel materials
A.3 Certified Japanese steel materials
A.4 Certified Australian/New Zealand steel materials
A.5 Certified Chinese steel materials

Appendix B Testing of steel materials

Appendix C Standards for reference

C.1 British/European standards for reference
C.2 American standards for reference
C.3 Japanese standards for reference
C.4 Australian/New Zealand standards for reference
C.5 Chinese standards for reference
Appendix A Lists of certified steel materials

This appendix only covers certified steel materials manufactured to certain British/European standards (BS EN), American standards (API, ASTM and AWS), Japanese standards (JIS), Australian/New Zealand standards (AS/NZS and AS) and Chinese standards (GB), and shall be updated in accordance with the latest version of the respective standards.

NOTE Depending on the quality assurance provided by the manufacturer, materials in this appendix can be either Class 1 or Class 3.

A.1 Certified British/European steel materials

A.1.1 Certified British/European steel plates

Any combination of steel grades manufactured to:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S235JR</td>
<td>S275N</td>
<td>S275M</td>
<td>S235J0W</td>
<td>S460Q</td>
</tr>
<tr>
<td>S235J0</td>
<td>S275NL</td>
<td>S275ML</td>
<td>S235J2W</td>
<td>S460QL</td>
</tr>
<tr>
<td>S235J2</td>
<td>S355N</td>
<td>S355M</td>
<td>S355J0WP</td>
<td>S500Q</td>
</tr>
<tr>
<td>S275JR</td>
<td>S355NL</td>
<td>S355ML</td>
<td>S355J2WP</td>
<td>S500QL</td>
</tr>
<tr>
<td>S275J0</td>
<td>S420N</td>
<td>S420M</td>
<td>S355J0W</td>
<td>S500QL</td>
</tr>
<tr>
<td>S275J2</td>
<td>S420NL</td>
<td>S420ML</td>
<td>S355J2W</td>
<td>S620Q</td>
</tr>
<tr>
<td>S355JR</td>
<td>S460N</td>
<td>S460M</td>
<td>S355J0W</td>
<td>S620QL</td>
</tr>
<tr>
<td>S355J0</td>
<td>S460NL</td>
<td>S460ML</td>
<td>S355J2W</td>
<td>S690Q</td>
</tr>
<tr>
<td>S355J2</td>
<td></td>
<td></td>
<td>S355K2W</td>
<td>S690QL</td>
</tr>
<tr>
<td>S355K2</td>
<td></td>
<td></td>
<td></td>
<td>S690QL1</td>
</tr>
</tbody>
</table>

with dimensional and/or mass tolerances in accordance with:

<table>
<thead>
<tr>
<th>BS EN 10029:1991</th>
<th>BS EN 10051:1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>Category A</td>
</tr>
<tr>
<td>Class B</td>
<td>Category B</td>
</tr>
<tr>
<td>Class C</td>
<td></td>
</tr>
<tr>
<td>Class D</td>
<td></td>
</tr>
</tbody>
</table>

or

A.1.2 Certified British/European hot rolled sections

Any combination of steel grades manufactured to:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S235JR</td>
<td>S275N</td>
<td>S275M</td>
<td>S235J0W</td>
<td>S460Q</td>
</tr>
<tr>
<td>S235J0</td>
<td>S275NL</td>
<td>S275ML</td>
<td>S235J2W</td>
<td>S460QL</td>
</tr>
<tr>
<td>S235J2</td>
<td>S355N</td>
<td>S355M</td>
<td>S355J0WP</td>
<td>S500Q</td>
</tr>
<tr>
<td>S275JR</td>
<td>S355NL</td>
<td>S355ML</td>
<td>S355J2WP</td>
<td>S500QL</td>
</tr>
<tr>
<td>S275J0</td>
<td>S420N</td>
<td>S420M</td>
<td>S355J0W</td>
<td>S500QL</td>
</tr>
<tr>
<td>S275J2</td>
<td>S420NL</td>
<td>S420ML</td>
<td>S355J2W</td>
<td>S620Q</td>
</tr>
<tr>
<td>S355JR</td>
<td>S460N</td>
<td>S460M</td>
<td>S355J0W</td>
<td>S620QL</td>
</tr>
<tr>
<td>S355J0</td>
<td>S460NL</td>
<td>S460ML</td>
<td>S355J2W</td>
<td>S690Q</td>
</tr>
<tr>
<td>S355J2</td>
<td></td>
<td></td>
<td>S355K2W</td>
<td>S690QL</td>
</tr>
<tr>
<td>S355K2</td>
<td></td>
<td></td>
<td></td>
<td>S690QL1</td>
</tr>
</tbody>
</table>

or
with dimensional and/or mass tolerances in accordance with:

A.1.3 Certified British/European hollow sections

Either any combination of steel grades manufactured to:-
BS EN 10210-1:2006
- S235JRH
- S275J0H
- S275J2H
- S275NH
- S355J0H
- S355J2H
- S355NH
- S420NH
- S420NLH

with dimensional and/or mass tolerances in accordance with:-
BS EN 10210-2:2006

Or any combination of steel grades manufactured to:-
BS EN 10219-1:2006
- S235JRH
- S275J0H
- S275J2H
- S275MH
- S275MLH
- S275NH
- S275NLH
- S355J0H
- S355J2H
- S355K2H
- S355MLH
- S355NLH
- S355NH
- S355NLH
- S420NH
- S420MLH
- S420NLH

A.1.4 Certified British/European steel for cold forming

Either any combination of steel grades manufactured to:-
BS EN 10025-2:2004
- S235JR
- S235J0
- S235J2
- S275JR
- S275J0
- S275J2
- S355JR
- S355J0
- S355J2
- S355K2

or

BS EN 10149-2:1996
- S315MC
- S355MC
- S420MC
- S460MC
- S500MC
- S550MC

or

BS EN 10149-3:1996
- S260NC
- S315NC
- S355NC
- S420NC

A.1.5 Certified British/European non-preloaded bolting assemblies

Bolts manufactured to:-
- BS 4190:2001
- BS 7419:1991
- BS EN ISO 4014:2001

or

- BS EN ISO 4016:2001
- BS EN ISO 4017:2001
- BS EN ISO 4018:2001
Nuts manufactured to:–
• BS 4190:2001
• BS EN ISO 4032:2001
• BS EN ISO 4033:2001
• BS EN ISO 4034:2001

Washers manufactured to:–
• BS 4320:1968
• BS EN ISO 7091:2000

A.1.6 Certified British/European preloaded bolting assemblies

Bolts manufactured to:–
• BS 4395-1:1969
• BS 4395-2:1969
• BS EN 14399-3:2005
• BS EN 14399-4:2005

Nuts manufactured to:–
• BS 4395-1:1969
• BS 4395-2:1969
• BS EN 14399-3:2005
• BS EN 14399-4:2005

Washers manufactured to:–
• BS 4395-1:1969
• BS 4395-2:1969
• BS EN 14399-5:2005
• BS EN 14399-6:2005

A.1.7 Certified British/European welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in 2.7, and manufactured to:–

• BS EN 440:1995
• BS EN 1668:1997
• BS EN 756:2004
• BS EN ISO 2560:2005
• BS EN 758:1997

A.1.8 Certified British/European profiled steel sheets

Any combination of steel grades manufactured to:–

BS EN 10326:2004
• S220GD
• S250GD
• S280GD
• S320GD
• S350GD
• S550GD

with dimensional and/or mass tolerances in accordance with:–

BS EN 10143:2006

A.1.9 Certified British/European stud shear connectors

Stud shear connectors manufactured to:–

BS EN ISO 13918:1998
A.2 Certified American steel materials

A.2.1 Certified American steel plates

Any combination of steel grades manufactured to:

- ASTM A 36–2005* or ASTM A 572–2007*:
 - Grade 290
 - Grade 345
 - Grade 380
 - Grade 415
 - Grade 450

- ASTM A 588–2005*:
 - Grade A
 - Grade B
 - Grade C
 - Grade K

- ASTM A 709–2007:
 - Grade 250F* or Grade 345F*
 - Grade 485F
 - Grade 690F

- ASTM A 852–2003(07):

NOTE *Copper content should not exceed 0.6 %, based on ladle analysis.

with dimensional and/or mass tolerances in accordance with:

- ASTM A 6–2007**

NOTE **Thickness of plate is less than 101 mm.

A.2.2 Certified American hot rolled sections

Any combination of steel grades manufactured to:

- ASTM A 36–2005* or ASTM A 572–2007*:
 - Grade 290
 - Grade 345
 - Grade 380
 - Grade 415
 - Grade 450

- ASTM A 588–2005*:
 - Grade A
 - Grade B
 - Grade C
 - Grade K

- ASTM A 709–2007:
 - Grade 250F or Grade 345F

- ASTM A 992–2006

NOTE *Copper content should not exceed 0.6 % and sulphur content should not exceed 0.045 %, based on ladle analysis.

with dimensional and/or mass tolerances in accordance with:

- ASTM A 6–2007**

NOTE **At least one dimension should be higher than 75 mm.

A.2.3 Certified American hollow sections

Any combination of steel grades manufactured to:

- API 5L–2004:
 - Grade B-PSL 2
 - Grade X42-PSL 2
 - Grade X46-PSL 2
 - Grade X52-PSL 2
 - Grade X56-PSL 2
 - Grade X60-PSL 2
 - Grade X65-PSL 2

with dimensional and/or mass tolerances in accordance with:

- API 5L–2004
A.2.4 Certified American steel for cold forming

Any combination of steel grades manufactured to:–

ASTM A 1011–2004
• Grade SS 205
• Grade SS 230
• Grade SS 250
• Grade HSLAS 310
• Grade HSLAS 340 Cl2
• Grade HSLAS-F 310
• Grade HSLAS-F 340

or

ASTM A 1008–2006
• Grade SS 205
• Grade SS 230
• Grade HSLAS 310
• Grade HSLAS 340 Cl2
• Grade HSLAS-F 410
• Grade SHS 210
• Grade SHS 240
• Grade BHS 210
• Grade BHS 240

or

ASTM A 792–2005
• Grade SS 230
• Grade SS 255
• Grade HSLAS 310
• Grade HSLAS 410

or

ASTM A 875–2002a
• Grade SS 230
• Grade SS 255
• Grade SS 275
• Grade HSLAS 340
• Grade HSLAS 410

with dimensional and/or mass tolerances in accordance with:–

ASTM A 924–2007* or ASTM A 568–2007

NOTE *ASTM A 924–2007, Table 3: Thickness Tolerances for Hot-Dip Metallic-Coated Sheet—1-in. [25-mm] Minimum Edge Distance

A.2.5 Certified American non-preloaded bolting assemblies

Bolts manufactured to:–
• ASTM A 307–2007b (Grade B)
• ASTM A 325–2007a
• ASTM A 449–2007b
• ASTM A 490–2006

Nuts manufactured to:–
• ASTM A 563–2007a (Class 5, Class 9, Class 8S, Class 8S3-A, C, D, E, F, Class 10, Class 10S, Class 10S3 and Class 12)
• ASTM A 194–2007b (Grade 4, Grade 6, Grade 7, 7M, Grade 8, 8A, 8C, 8CA, 8M, 8MA, 8T, 8TA, 8P, 8PA, 8N, 8NA, 8LN, 8LNA, 8MN, 8MNA, 8MLN, 8MLNA, 8R, 8RA, 8S, 8SA, 8MLCuN, 8MLCuNA, Grade 9C, 9CA and Grade 16)

Washers manufactured to:–
• ASTM F 436–2007a (Type 1 and Type 3)

A.2.6 Certified American preloaded bolting assemblies

Bolts manufactured to:–
• ASTM A 325–2007a
• ASTM A 354–2007a (Grade BC and Grade BD)
• ASTM A 490–2006

Nuts manufactured to:–
• ASTM F 1852–2007
• ASTM A 563–2007a (Class 8S3-C and Class 8S3-D or Class 10S zinc-coated for zinc-coated bolts)

Washers manufactured to:–
• ASTM F 959–2007a
• ASTM F 436–2007a (Type 1 and Type 3)
A.2.7 Certified American welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in 2.7, and manufactured to:

AWS A 5.1–2004
- E4915
- E4916
- E4918
- E4927
- E4928
- E4948

A.2.8 Certified American profiled steel sheets

ASTM A 653–2007*
- Grade HSLAS 275
- Grade HSLAS 340
- Grade HSLAS 410
- Grade HSLAS-F 275
- Grade HSLAS-F 340
- Grade HSLAS-F 410
- Grade SHS 210
- Grade SHS 240
- Grade SHS 280
- Grade SHS 300
- Grade BHS 210
- Grade BHS 240
- Grade BHS 280
- Grade BHS 300

NOTE *Phosphorous content should not exceed 0.05 %.

with dimensional and/or mass tolerances in accordance with:

ASTM A 924–2007**

NOTE **ASTM A 924–2007, Table 3: Thickness Tolerances for Hot-Dip Metallic-Coated Sheet—1-in. [25-mm] Minimum Edge Distance

A.2.9 Certified American shear stud connectors

Stud shear connectors manufactured to:

AWS D 1.1–2007
- Type B
A.3 Certified Japanese steel materials

A.3.1 Certified Japanese steel plates

Steel grades manufactured to:-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• SM490A**</td>
<td>• SMA490BW**</td>
<td>• SN400B***</td>
</tr>
<tr>
<td>• SM490B**</td>
<td>• SMA490BP**</td>
<td>• SN400C****</td>
</tr>
<tr>
<td>• SM490C*</td>
<td>• SMA490CW*</td>
<td>• SN490B***</td>
</tr>
<tr>
<td>• SM490YA*</td>
<td>• SMA490CP*</td>
<td>• SN490C****</td>
</tr>
<tr>
<td>• SM490YB*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SM520B*</td>
<td>• SMA570W*</td>
<td></td>
</tr>
<tr>
<td>• SM520C*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SM570*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

or

NOTE *Thickness of plate should not be greater than 100 mm.
NOTE **Thickness of plate should not be greater than 200 mm.
NOTE ***Thickness of plate should be in the range of 6 mm to 100 mm.
NOTE ****Thickness of plate should be in the range of 16 mm to 100 mm.

A.3.2 Certified Japanese hot rolled sections

Steel grades manufactured to:-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• SM490A**</td>
<td>• SMA490BW**</td>
<td>• SN400B***</td>
</tr>
<tr>
<td>• SM490B**</td>
<td>• SMA490BP**</td>
<td>• SN400C****</td>
</tr>
<tr>
<td>• SM490C*</td>
<td>• SMA490CW*</td>
<td>• SN490B***</td>
</tr>
<tr>
<td>• SM490YA*</td>
<td>• SMA490CP*</td>
<td>• SN490C****</td>
</tr>
<tr>
<td>• SM490YB*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SM520B*</td>
<td>• SMA570W*</td>
<td></td>
</tr>
<tr>
<td>• SM520C*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SM570*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

or

NOTE *Thickness of section should not be greater than 100 mm.
NOTE **Thickness of section should not be greater than 200 mm.
NOTE ***Thickness of section should be in the range of 6 mm to 100 mm.
NOTE ****Thickness of section should be in the range of 16 mm to 100 mm.

A.3.3 Certified Japanese hollow sections

Any combination of steel grades manufactured to:-

<table>
<thead>
<tr>
<th>JIS G 3475: 1996*</th>
</tr>
</thead>
<tbody>
<tr>
<td>• STKN490B</td>
</tr>
</tbody>
</table>

with dimensional and/or mass tolerances in accordance with:-

| JIS G 3475: 1996* |

NOTE *Only hot-finished non-seamless hollow sections with outside diameter not greater than 100 mm are certified.
A.3.4 Certified Japanese steel for cold forming

Steel grades manufactured to:

- JIS G 3106:2004
 - SM490A
 - SM490B
 - SM490C
 - SM490YA
 - SM490YB
 - SM520B
 - SM520C
 - SM570

- JIS G 3114:2004
 - SMA490BW
 - SMA490BP
 - SMA490CW
 - SMA490CP
 - SMA570W
 - SMA570W

or

- JIS G 3136:2000
 - SN400B
 - SN490B
 - SN520B
 - SN520C
 - SN570

A.3.5 Certified Japanese non-preloaded bolting assemblies

Bolts manufactured to:

- JIS B 1051: 2000
- JIS B 1180: 2004

Nuts manufactured to:

- JIS B 1052: 1998
- JIS B 1181: 2004

Washers manufactured to:

- JIS B 1256: 1998

A.3.6 Certified Japanese preloaded bolting assemblies

Bolts manufactured to:

- JIS B 1186: 1995

Nuts manufactured to:

- JIS B 1186: 1995

Washers manufactured to:

- JIS B 1186: 1995

A.3.7 Certified Japanese welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in 2.7, and manufactured to:

- JIS Z 3211: 2000
- JIS Z 3212: 2000
- JIS Z 3313: 1999

A.3.8 Certified Japanese profiled steel sheets

Any combination of steel grades manufactured to:

- JIS G 3302: 2005
 - SGH340
 - SGH400
 - SGH440
 - SGH490
 - SGH540
 - SGC340
 - SGC400
 - SGC440
 - SGC490

with dimensional and/or mass tolerances in accordance with:

- JIS G 3302: 2005

A.3.9 Certified Japanese stud shear connectors

Stud shear connectors manufactured to:

- JIS B 1198: 1995
A.4 Certified Australian/New Zealand steel materials

A.4.1 Certified Australian/New Zealand steel plates

Either any combination of steel grades manufactured to:-

AS/NZS 3678-1996
- Grade 250 L15
- Grade 300 L15
- Grade 350 L15
- Grade 400 L15
- Grade 450 L15

with dimensional and/or mass tolerances in accordance with:-

AS/NZS 1365-1996*

NOTE *Plates are rolled on continuous mills. If plates are rolled on reversing mills, width of plate should be less than 2.7 m.

Or any combination of steel grades manufactured to:-

AS 1548-1995
- Grade 5-490 N or A
- Grade 7-430 R, N, T, or A
- Grade 7-460 R, N, T, or A
- Grade 7-490 R, N, T, or A

with dimensional and/or mass tolerances in accordance with:-

AS/NZS 1548-1995*

NOTE *Plates are rolled on continuous mills. If plates are rolled on reversing mills, width of plate should be less than 2.7 m.

A.4.2 Certified Australian/New Zealand hot rolled sections

Any combination of steel grades manufactured to:-

AS/NZS 3679.1-1996
- Grade 250 (L0, L15)
- Grade 350 (L0, L15)
- Grade 400 (L0, L15)

with dimensional and/or mass tolerances in accordance with:-

AS/NZS 3679.1-1996*

NOTE *Basis for acceptance is stringent mass tolerance requirement.

A.4.3 Certified Australian/New Zealand hollow sections

Any combination of steel grades manufactured to:-

AS 1163-2007
- C250 (L0, L15)
- C275 (L0, L15)
- C300 (L0, L15)
- C350 (L0, L15)
- C400 (L0, L15)
- C450 (L0, L15)
with dimensional and/or mass tolerances in accordance with:

AS 1163-2007*

NOTE
* Basis for acceptance is stringent mass tolerance requirement.

A.4.4 Certified Australian/New Zealand steel for cold forming

Any combination of steel grades manufactured to:

- AS/NZS 1595-1998
 - CA 220
 - CA 260
 - CA 350

with dimensional and/or mass tolerances in accordance with:

AS/NZS 1365-1996*

Or any combination of steel grades manufactured to:

- AS/NZS 1397-2001
 - Grade 250
 - Grade 300
 - Grade 350
 - Grade 400
 - Grade 450

with dimensional and/or mass tolerances in accordance with:

AS/NZS 1365-1996*

NOTE
* Basis for acceptance is stringent thickness tolerance requirement.

A.4.5 Certified Australian/New Zealand non-preloaded bolting assemblies

Bolts manufactured to:

- AS/NZS 1252-1996
- AS 4291.1-2000*
- AS/NZS 1559-1997

NOTE
* Grade 12.9 is non-certified.

Nuts manufactured to:

- AS/NZS 1252-1996
- AS/NZS 4291.2-1995

Washers manufactured to:

- AS/NZS 1252-1996

A.4.6 Certified Australian/New Zealand preloaded bolting assemblies

Bolts manufactured to:

- AS/NZS 1252-1996
- AS 4291.1-2000
Nuts manufactured to:
• AS/NZS 1252-1996
• AS/NZS 4291.2:1995

Washers manufactured to:
• AS/NZS 1252-1996

A.4.7 Certified Australian/New Zealand welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in 2.7, and manufactured to:

• AS/NZS 1554.1:2004
• AS/NZS 4855:2007
• AS/NZS 4857:2006*
• AS 1858.1:2003**
• AS/NZS 2717.1:1996

NOTE *Only grades 55, 62 and 69 are certified.
NOTE **Z is non-certified.
NOTE ***Only grades W5xxx to W6xxx are certified; grade WSXH is non-certified.

A.4.8 Certified Australian/New Zealand profiled steel sheets

Any combination of steel grades manufactured to:

AS/NZS 1397-2001
• Grade 250
• Grade 300
• Grade 350
• Grade 400
• Grade 450
• Grade 500
• Grade 550

with dimensional and/or mass tolerances in accordance with:

AS/NZS 1365:1996*

NOTE *Tolerances for cold-rolled sheet/strip.

A.4.9 Certified Australian/New Zealand shear stud connectors

Stud shear connectors manufactured to:

AS/NZS 1554.2:2003*

NOTE *Stud diameter should be at least 15.9 mm.
A.5 Certified Chinese steel materials

A.5.1 Certified Chinese steel plates

Any combination of steel grades manufactured to:-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q235BZ</td>
<td>Q295B</td>
<td>Q295GNH</td>
<td>Q235NHC</td>
<td>Q235GJC</td>
</tr>
<tr>
<td>Q235CZ</td>
<td>Q345B</td>
<td>Q295GNHL</td>
<td>Q235NHD</td>
<td>Q235GJD</td>
</tr>
<tr>
<td>Q235DTZ</td>
<td>Q345C</td>
<td>Q345GNH</td>
<td>Q235NHE</td>
<td>Q235GJE</td>
</tr>
<tr>
<td>Q275BZ</td>
<td>Q345D</td>
<td>Q345GNHL</td>
<td>Q295NHC</td>
<td>Q235GJZxxC**</td>
</tr>
<tr>
<td>Q275CZ</td>
<td>Q345E</td>
<td>Q390GNH</td>
<td>Q295NHD</td>
<td>Q235GJZxxD**</td>
</tr>
<tr>
<td>Q275DTZ</td>
<td>Q390B</td>
<td></td>
<td>Q295NHE</td>
<td>Q235GJZxxE**</td>
</tr>
<tr>
<td></td>
<td>Q390C</td>
<td></td>
<td>Q355NHC</td>
<td>Q345GJC</td>
</tr>
<tr>
<td></td>
<td>Q390D</td>
<td></td>
<td>Q355NHD</td>
<td>Q345GJD</td>
</tr>
<tr>
<td></td>
<td>Q390E</td>
<td></td>
<td>Q355NHE</td>
<td>Q345GJE</td>
</tr>
<tr>
<td></td>
<td>Q420B</td>
<td></td>
<td>Q460NHD</td>
<td>Q345GJZxxC**</td>
</tr>
<tr>
<td></td>
<td>Q420C</td>
<td></td>
<td>Q460NHE</td>
<td>Q345GJZxxD**</td>
</tr>
<tr>
<td></td>
<td>Q420D</td>
<td></td>
<td></td>
<td>Q345GJZxxE**</td>
</tr>
<tr>
<td></td>
<td>Q420E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q460C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q460D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q460E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

with dimensional and/or mass tolerances in accordance with:-

<table>
<thead>
<tr>
<th>GB/T 709-2006*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
</tr>
<tr>
<td>Class B</td>
</tr>
<tr>
<td>Class C</td>
</tr>
<tr>
<td>Class N</td>
</tr>
<tr>
<td>PT.A</td>
</tr>
<tr>
<td>PT.B</td>
</tr>
</tbody>
</table>

NOTE *Steel plates manufactured to GB/T 912-1989 and GB/T 3274-1988, which make reference to GB/T 700-2006, GB/T 1591-1994 and GB/T 709-2006, shall be considered certified.

A.5.2 Certified Chinese hot rolled sections

Any combination of steel grades manufactured to:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Q235BZ</td>
<td>• Q295B</td>
<td>• Q295GNH</td>
<td>• Q235NHC</td>
</tr>
<tr>
<td>• Q235CZ</td>
<td>• Q345B</td>
<td>• Q295GNHL</td>
<td>• Q235NHD</td>
</tr>
<tr>
<td>• Q235DTZ</td>
<td>• Q345C</td>
<td>• Q345GNH</td>
<td>• Q235NHE</td>
</tr>
<tr>
<td>• Q275BZ</td>
<td>• Q345D</td>
<td>• Q345GNHL</td>
<td>• Q295NHC</td>
</tr>
<tr>
<td>• Q275CZ</td>
<td>• Q345E</td>
<td>• Q390GNH</td>
<td>• Q295NHD</td>
</tr>
<tr>
<td>• Q275DTZ</td>
<td>• Q390B</td>
<td>or</td>
<td>• Q295NHE</td>
</tr>
<tr>
<td></td>
<td>• Q390C</td>
<td></td>
<td>• Q355NHC</td>
</tr>
<tr>
<td></td>
<td>• Q390D</td>
<td></td>
<td>• Q355NHD</td>
</tr>
<tr>
<td></td>
<td>• Q390E</td>
<td></td>
<td>• Q355NHE</td>
</tr>
<tr>
<td></td>
<td>• Q420B</td>
<td></td>
<td>• Q460NHD</td>
</tr>
<tr>
<td></td>
<td>• Q420C</td>
<td></td>
<td>• Q460NHE</td>
</tr>
<tr>
<td></td>
<td>• Q420D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q420E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q460C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q460D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q460E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

with dimensional and/or mass tolerances in accordance with:

A.5.3 Certified Chinese hollow sections

Either any combination of steel grades manufactured to:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Q235CZ</td>
<td>• Q345C</td>
<td>• Q420C*</td>
</tr>
<tr>
<td>• Q235DTZ</td>
<td>• Q345D</td>
<td>• Q420D*</td>
</tr>
<tr>
<td>• Q275CZ</td>
<td>• Q345E</td>
<td>• Q420E*</td>
</tr>
<tr>
<td>• Q275DTZ</td>
<td>• Q390C</td>
<td>• Q460C*</td>
</tr>
<tr>
<td></td>
<td>• Q390D</td>
<td>• Q460D*</td>
</tr>
<tr>
<td></td>
<td>• Q390E</td>
<td>• Q460E*</td>
</tr>
</tbody>
</table>

*Quenched and tempered steels are non-certified.

with dimensional and/or mass tolerances in accordance with:

- GB/T 6728-2002

Or any combination of steel grades manufactured to:

<table>
<thead>
<tr>
<th>GB/T 8162-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Q345</td>
</tr>
</tbody>
</table>

with dimensional and/or mass tolerances in accordance with:

- GB/T 8162-1999 and GB/T 17395-1998
A.5.4 Certified Chinese steel for cold forming

Any combination of steel grades manufactured to:-

<table>
<thead>
<tr>
<th>GB/T 700-2006</th>
<th>GB/T 1591-1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Q215AZ</td>
<td>• Q295A</td>
</tr>
<tr>
<td>• Q215BZ</td>
<td>• Q295B</td>
</tr>
<tr>
<td>• Q235AZ</td>
<td>• Q345A</td>
</tr>
<tr>
<td>• Q235BZ</td>
<td>• Q345B</td>
</tr>
<tr>
<td>• Q235CZ</td>
<td>• Q345C</td>
</tr>
<tr>
<td>• Q235DTZ</td>
<td>• Q345D</td>
</tr>
<tr>
<td>• Q275AZ</td>
<td>• Q345E</td>
</tr>
<tr>
<td>• Q275BZ</td>
<td>• Q390A</td>
</tr>
<tr>
<td>• Q275CZ</td>
<td>• Q390B</td>
</tr>
<tr>
<td>• Q275DTZ</td>
<td>• Q390C</td>
</tr>
<tr>
<td>or</td>
<td>• Q390D</td>
</tr>
</tbody>
</table>

NOTE *Quenched and tempered steels are non-certified.*

with dimensional and/or mass tolerances in accordance with:-

GB/T 709-2006

A.5.5 Certified Chinese non-preloaded bolting assemblies

Bolts manufactured to:-

• GB/T 5780-2000
• GB/T 5781-2000
• GB/T 5782-2000
• GB/T 5783-2000

Nuts manufactured to:-

• GB/T 41-2000
• GB/T 6170-2000
• GB/T 6175-2000

Washers manufactured to:-

• GB/T 95-2002

A.5.6 Certified Chinese preloaded bolting assemblies

Bolts manufactured to:-

• GB/T 1228-2006
• GB/T 3632-1995

Nuts manufactured to:-

• GB/T 1229-2006
• GB/T 3632-1995

Washers manufactured to:-

• GB/T 1230-2006
• GB/T 3632-1995
A.5.7 Certified Chinese welding consumables

Welding consumables, which result in all-weld metals meeting material performance requirements in 2.7, and manufactured to:-

- GB/T 5117-1995
- GB/T 5118-1995
- GB/T 5293-1999
- GB/T 8110-1995
- GB/T 10045-2001
- GB/T 12470-2003
- GB/T 17493-1998

A.5.8 Certified Chinese profiled steel sheets

Any combination of steel grades manufactured to:-
GB/T 2518-2004

- 220 (structural grade)
- 250 (structural grade)
- 280 (structural grade)
- 320 (structural grade)
- 350 (structural grade)
- 400 (structural grade)
- 500 (structural grade)
- 550 (structural grade)

with dimensional and/or mass tolerances in accordance with:-
GB/T 2518-2004

A.5.9 Certified Chinese stud shear connectors

Stud shear connectors manufactured to:-
GB/T 10433-2002
Testing of steel materials shall be in accordance with the standards given in Table B.1.

Table B.1 — Material testing required for steel materials

<table>
<thead>
<tr>
<th>Tests</th>
<th>Materials</th>
<th>Parameters tested</th>
<th>Standards for reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile test</td>
<td>Steel plates</td>
<td>Yield strength</td>
<td>BS EN 10002-1:2001</td>
</tr>
<tr>
<td></td>
<td>Hot rolled sections</td>
<td>Tensile strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hollow sections</td>
<td>Elongation after fracture</td>
<td></td>
</tr>
<tr>
<td>Charpy impact test</td>
<td>Steel plates</td>
<td>Impact energy</td>
<td>BS EN 10045-1:1990</td>
</tr>
<tr>
<td></td>
<td>Hot rolled sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hollow sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steel for cold forming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness test</td>
<td>Bolts</td>
<td>Brinell hardness</td>
<td>BS EN ISO 6506-1:2005</td>
</tr>
<tr>
<td></td>
<td>Nuts</td>
<td>Vickers hardness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washers</td>
<td>Rockwell hardness</td>
<td></td>
</tr>
<tr>
<td>All-weld metal tests</td>
<td>Welding consumables</td>
<td>Yield strength</td>
<td>BS EN 1597-1:1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tensile strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elongation after fracture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impact energy</td>
<td></td>
</tr>
<tr>
<td>Chemical analysis</td>
<td>Steel plates</td>
<td>Carbon contentb</td>
<td>BS EN ISO 14284:2002</td>
</tr>
<tr>
<td></td>
<td>Hot rolled sections</td>
<td>Carbon equivalent valueb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hollow sections</td>
<td>Sulphur contentb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steel for cold forming</td>
<td>Phosphorous contentb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolts</td>
<td>Othersc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profiled steel sheets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) To ensure the adequacy of non-certified steel materials, parameters tested shall be in compliance with the relevant material performance requirements given in Section 2.
b) Compared to the limits specified for ladle analysis in Section 2, limits for product analysis shall be: 0.03 % higher for carbon content; 0.04 % higher for carbon equivalent value; 0.01 % higher for each sulphur and phosphorous content.
c) The content of the following elements shall also be determined and recorded: silicon, manganese, copper, chromium, molybdenum, nickel, aluminium, niobium, titanium, vanadium, nitrogen and any other element intentionally added.
This appendix covers British/European, American, Japanese, Australian/New Zealand and Chinese standards used as reference materials for this design guide. The standards listed in this appendix are only current and confirmed at the time of drafting of this design guide and shall be updated in accordance with the latest version of the respective standards.

C.1 British/European standards for reference

The following British/European standards are published by the British Standards Institution, London, United Kingdom.

C.1.1 British/European standards on design of steel structures

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 5950-1:2000</td>
<td>Structural use of steelwork in building — Part 1: Code of practice for design — Rolled and welded sections</td>
</tr>
<tr>
<td>BS 5950-3.1:1990</td>
<td>Structural use of steelwork in building — Part 3: Design in composite construction — Section 3.1 Code of practice for design of simple and continuous composite beams</td>
</tr>
<tr>
<td>BS 5950-4:1994</td>
<td>Structural use of steelwork in building — Part 4: Code of practice for design of composite slabs with profiled steel sheeting</td>
</tr>
<tr>
<td>BS 5950-5:1998</td>
<td>Structural use of steelwork in building — Part 5: Code of practice for design of cold-formed thin gauge sections</td>
</tr>
<tr>
<td>BS 5950-6:1995</td>
<td>Structural use of steelwork in building — Part 6: Code of practice for design of light gauge profiled steel sheeting</td>
</tr>
<tr>
<td>BS 5950-7:1992</td>
<td>Structural use of steelwork in building — Part 7: Specification for materials and workmanship: cold formed sections</td>
</tr>
</tbody>
</table>

C.1.2 British/European standards on steel materials

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 7668:2004</td>
<td>Weldable structural steels — Hot finished structural hollow sections in weather resistant steels — Specification</td>
</tr>
<tr>
<td>BS EN 10020:2000</td>
<td>Definition and classification of grades of steel</td>
</tr>
<tr>
<td>BS EN 10021:1993</td>
<td>General technical delivery requirements for steel and iron products</td>
</tr>
<tr>
<td>BS EN 10025-1:2004</td>
<td>Hot rolled products of structural steels — Part 1: General technical delivery conditions</td>
</tr>
<tr>
<td>BS EN 10025-2:2004</td>
<td>Hot rolled products of structural steels — Part 2: Technical delivery conditions for non-alloy structural steels</td>
</tr>
<tr>
<td>BS EN 10025-3:2004</td>
<td>Hot rolled products of structural steels — Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels</td>
</tr>
<tr>
<td>BS EN 10025-4:2004</td>
<td>Hot rolled products of structural steels — Part 4: Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels</td>
</tr>
</tbody>
</table>
BS EN 10025-5:2004 Hot rolled products of structural steels — Part 5: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance

BS EN 10025-6:2004 Hot rolled products of structural steels — Part 6: Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition

BS EN 10027-1:2005 Designation systems for steels — Part 1: Steel names

BS EN 10079:2007 Definition of steel products

BS EN 10149-1:1996 Specification for hot-rolled flat products made of high yield strength steels for cold forming — Part 1: General delivery conditions

BS EN 10149-2:1996 Specification for hot-rolled flat products made of high yield strength steels for cold forming — Part 2: Delivery conditions for thermomechanically rolled steels

BS EN 10149-3:1996 Specification for hot-rolled flat products made of high yield strength steels for cold forming — Part 3. Delivery conditions for normalized or normalized rolled steels

BS EN 10164:2004 Steel products with improved deformation properties perpendicular to the surface of the product — Technical delivery conditions

BS EN 10210-1:2006 Hot finished structural hollow sections of non-alloy and fine grain steels — Part 1: Technical delivery conditions

BS EN 10219-1:2006 Cold formed welded structural hollow sections of non-alloy and fine grain steels — Part 1: Technical delivery conditions

BS EN 10219-2:2006 Cold formed welded structural hollow sections of non-alloy and fine grain steels — Part 2: Tolerances, dimensions and sectional properties

BS EN 10279:2004 Continuously hot-dip coated strip and sheet of structural steels — Technical delivery conditions

C.1.3 **British/European standards on manufacturing tolerances**

BS EN 10024:1995 Hot rolled taper flange I sections — Tolerances on shape and dimensions

BS EN 10029:1991 Specification for tolerances on dimensions, shape and mass for hot rolled steel plates 3 mm thick or above

BS EN 10034:1993 Structural steel I and H sections — Tolerances on shape and dimensions

BS EN 10051:1992 Continuously hot-rolled uncoated plate, sheet and strip of non-alloy and alloy steels — Tolerances on dimensions and shape

BS EN 10055:1996 Hot rolled steel equal flange tees with radiused root and toes — Dimensions and tolerances on shape and dimensions

BS EN 10056-2:1993 Specification for structural steel equal and unequal leg angles — Part 2: Tolerances on shape and dimensions

BS EN 10210-2:2006 Hot finished structural hollow sections of non-alloy and fine grain steels — Part 2: Tolerances, dimensions and sectional properties

BS EN 10219-2:2006 Cold formed welded structural hollow sections of non-alloy and fine grain steels — Part 2: Tolerances, dimensions and sectional properties

BS EN 10279:2000 Hot rolled steel channels — Tolerances on shape, dimension and mass
C.1.4 British/European standards on bolting assemblies

General information
BS EN 20898-2:1994 Mechanical properties of fasteners — Part 2: Nuts with specified proof load values — Coarse thread
BS EN ISO 898-1:1999 Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs
BS EN ISO 16426:2002 Fasteners — Quality assurance system

Non-preloaded assemblies
BS 4190:2001 ISO metric black hexagon bolts, screws and nuts — Specification
BS 4320:1968 Specification for metal washers for general engineering purposes metric series
BS 7419:1991 Specification for holding down bolts
BS EN ISO 4014:2001 Hexagon head bolts — Product grades A and B
BS EN ISO 4016:2001 Hexagon head bolts — Product grade C
BS EN ISO 4017:2001 Hexagon head screws — Product grades A and B
BS EN ISO 4018:2001 Hexagon head screws — Product grade C
BS EN ISO 4032:2001 Hexagon nuts, style 1 — Product grades A and B
BS EN ISO 4033:2001 Hexagon nuts, style 2 — Product grades A and B
BS EN ISO 4034:2001 Hexagon nuts — Product grade C
BS EN ISO 7091:2000 Plain washers — Normal series — Product Grade C

Preloaded assemblies
BS 4395-2:1969 Specification for high strength friction grip bolts and associated nuts and washers for structural engineering metric series — Part 2: Higher grade bolts and nuts and general grade washers
BS 4604-1:1970 Specification for the use of high strength friction grip bolts in structural steelwork metric series — Part 1: General grade
BS 7644-1:1993 Direct tension indicators — Part 1: Specification for compressible washers
BS 7644-2:1993 Direct tension indicators — Part 2: Specification for nut face and bolt face washers
BS EN 14399-1:2005 High-strength structural bolting assemblies for preloading — Part 1: General requirements
BS EN 14399-2:2005 High-strength structural bolting assemblies for preloading — Part 2: Suitability test for preloading
BS EN 14399-3:2005 High-strength structural bolting assemblies for preloading — Part 3: System HR — Hexagon bolt and nut assemblies
BS EN 14399-4:2005 High-strength structural bolting assemblies for preloading — Part 4: System HV — Hexagon bolt and nut assemblies
BS EN 14399-5:2005 High-strength structural bolting assemblies for preloading — Part 5: Plain washers
BS EN 14399-6:2005 High-strength structural bolting assemblies for preloading — Part 6: Plain chamfered washers

C.1.5 British/European standards on welding consumables
BS EN 440:1995 Welding consumables — Wire electrodes and deposits for gas shielded metal arc welding of non alloy and fine grain steels — Classification
BS EN 756:2004 Welding consumables — Solid wires, solid wire-flux and tubular cored electrode-flux combinations for submerged arc welding of non alloy and fine grain steels — Classification
BS EN 758:1997 Welding consumables — Tubular cored electrodes for metal arc welding with and without a gas shield of non-alloy and fine grain steels — Classification
BS EN 1668:1997 Welding consumables — Rods, wires and deposits for tungsten inert gas welding of non alloy and fine grain steels — Classification
BS EN ISO 2560:2005 Welding consumables — Covered electrodes for manual metal arc welding of non-alloy and fine grain steels — Classification

C.1.6 British/European standards on profiled steel sheets
BS EN 10326:2004 Continuously hot-dip coated strip and sheet of structural steels — Technical delivery conditions
BS EN 10143:2006 Continuously hot-dip coated steel sheet and strip — Tolerances on dimensions and shape

C.1.7 British/European standards on stud shear connectors
BS EN ISO 13918:1998 Welding — Studs and ceramic ferrules for arc stud welding

C.1.8 British/European standards on material testing
BS EN 1597-1:1997 Welding consumables — Test methods — Part 1. Test piece for all-weld metal test specimens in steel, nickel and nickel alloys
BS EN 10002-1:2001 Metallic materials — Tensile testing — Part 1: Method of test at ambient temperature
BS EN 10045-1:1990 Charpy impact test on metallic materials — Part 1: Test method (V-and U-notches)
BS EN 20898-2:1994 Mechanical properties of fasteners — Part 2: Nuts with specified proof load values — Coarse thread
BS EN ISO 2566-1:1999 Steel — Conversion of elongation values — Part 1: Carbon and low alloy steels
BS EN ISO 14284:2002 Steel and iron — Sampling and preparation of samples for the determination of chemical composition

C.1.9 British/European standards on inspection documents
BS EN 10168:2004 Steel products — Inspection documents — List of information and description
BS EN 10204:2004 Metallic products — Types of inspection documents
C.2 American standards for reference

The following American standards are published by the American Institute of Steel Construction, Chicago, Illinois; the American Petroleum Institute, Washington, D.C.; the American Society for Testing and Materials, West Conshohocken, Pennsylvania; the American Welding Society, Miami, Florida, United States of America.

C.2.1 American standards on design of steel structures

AISC 305-2005 Code of Standard Practice for Steel Buildings and Bridges
AISC 360-2005 Specification for Structural Steel Buildings

C.2.2 American standards on steel materials

API 5L–2004 Specification for line pipe
ASTM A 53–2007 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
ASTM A 109–2003 Standard Specification for Steel, Strip, Carbon (0.25 Maximum Percent), Cold-Rolled
ASTM A 242–2004 Standard Specification for High-Strength Low-Alloy Structural Steel
ASTM A 500–2007 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
ASTM A 501–2007 Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing
ASTM A 514–2005 Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding
ASTM A 529–2005 Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality
ASTM A 572–2007 Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel
ASTM A 595–2006 Standard Specification for Steel Tubes, Low-Carbon or High-Strength Low-Alloy, Tapered for Structural Use
ASTM A 618–2004 Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing
ASTM A 653–2007 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A 709–2007 Standard Specification for Structural Steel for Bridges

ASTM A 792–2006a Standard Specification for Steel Sheet, 55 % Aluminum-Zinc Alloy-Coated by the Hot-Dip Process

ASTM A 847–2005 Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance

ASTM A 875–2006 Standard Specification for Steel Sheet, Zinc-5 % Aluminum Alloy-Coated by the Hot-Dip Process

ASTM A 913–2007 Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)

ASTM A 945–2006 Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness

ASTM A 992–2006 Standard Specification for Structural Steel Shapes

ASTM A 1003–2005 Standard Specification for Steel Sheet, Carbon, Metallic- and Nonmetallic-Coated for Cold-Formed Framing Members

ASTM A 1008–2007 Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable

ASTM A 1011–2007 Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability

C.2.3 American standards on manufacturing tolerances

ASTM A 924–2007 Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM A 999–2004 Standard Specification for General Requirements for Alloy and Stainless Steel Pipe

C.2.4 American standards on bolting assemblies

Non-preloaded assemblies

ASTM A 194–2007b Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both

ASTM A 307–2007b Standard Specification for Carbon Steel Bolts and Studs, 60 000 psi Tensile Strength

ASTM A 354–2007a Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners

ASTM A 490–2006 Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints [Metric]

ASTM F 436–2007a Standard Specification for Hardened Steel Washers

Preloaded assemblies

ASTM A 194–2007b Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both

ASTM A 354–2007a Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners

ASTM F 436–2007a Standard Specification for Hardened Steel Washers

ASTM F 959–2007a Standard Specification for Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners [Metric]

C.2.5 American standards on welding consumables

AWS D1.3–1998 Structural welding code – Sheet steel

AWS A5.1–2004 Specifications for carbon steel electrodes for shielded metal arc-welding

C.2.6 American standards on profiled steel sheets

ASTM A 653–2007 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

C.2.7 American standards on shear stud connectors

AWS D 1.1–2004 Structural Welding Code – Steel
C.3 Japanese standards for reference

The following Japanese standards are published by the Japanese Industrial Standards Committee, Tokyo, Japan.

C.3.1 Japanese standards on design of steel structures
JSCE: 1997 Design Code for Steel Structures – Part B: Composite Structures

C.3.2 Japanese standards on steel materials
JIS G 3101:2004 Rolled steels for general structure
JIS G 3106:2004 Rolled steels for welded structure
JIS G 3114:2004 Hot-rolled atmospheric corrosion resisting steels for welded structure
JIS G 3128:1999 High yield strength steel plates for welded structure
JIS G 3131:2005 Hot-rolled mild steel plates, sheets and strip
JIS G 3132:2005 Hot-rolled carbon steel strip for pipes and tubes
JIS G 3136:2005 Rolled steels for building structure
JIS G 3302:2005 Hot-dip zinc coated steel sheets and coils
JIS G 3312:2005 Prepainted hot-dip zinc-coated steel sheets and coils
JIS G 3321:2005 Hot-dip 55 % aluminium-zinc alloy-coated steel sheets and coils
JIS G 3322:2005 Prepainted hot-dip 55 % aluminium-zinc alloy-coated steel sheets and coils
JIS G 3350:2005 Light gauge sections for general structure
JIS G 3352:2003 Steel decks
JIS G 3444:2006 Carbon steel tubes for general structural purposes
JIS G 3466:2006 Carbon steel square pipes for general structural purposes
JIS G 3475:1996 Carbon steel tubes for building structure

C.3.3 Japanese standards on manufacturing tolerances
JIS G 3191:2002 Dimensions, mass and permissible variations of hot rolled steel bars in coil
JIS G 3192:2005 Dimensions, mass and permissible variations of hot rolled steel sections
JIS G 3193:2005 Dimensions, mass and permissible variations of hot rolled steel plates, sheets and strip
JIS G 3194:1998 Dimensions, mass and permissible variations of hot rolled flat steel

C.3.4 Japanese standards on bolting assemblies
Non-preloaded assemblies
JIS B 1051:2000 Mechanical properties of fasteners made of carbon steel and alloy steel
JIS B 1052:1998 Mechanical properties of nuts
JIS B 1180:2004 Hexagon head bolts and hexagon head screws
JIS B 1181:2004 Hexagon nuts and hexagon thin nuts
JIS B 1256:1998 Plain washers
Preloaded assemblies
JIS B 1186:1995 Sets of high strength hexagon bolt, hexagon nut and plain washers for friction grip joints

C.3.5 Japanese standards on welding consumables
JIS Z 3200:1995 Welding consumables – Technical delivery conditions for welding filler materials – Type of product, dimensions, tolerances and markings
JIS Z 3211:2000 Covered electrodes for mild steel
JIS Z 3212:2000 Covered electrodes for high tensile strength steel
JIS Z 3313:1999 Flux cored wires for gas shielded and self-shielded metal arc welding of mild steel, high strength steel and low temperature service steel

C.3.6 Japanese standards on profiled steel sheets
JIS G 3302:2005 Hot-dip zinc coated steel sheets and coils
JIS G 3321:2005 Hot-dip 55 % aluminium-zinc alloy-coated steel sheets and coils

C.3.7 Japanese standards on stud shear connectors
JIS B 1198:1995 Headed studs
C.4 Australian/New Zealand standards for reference

The following Australian/New Zealand standards are published by Standards Australia, Sydney, Australia.

C.4.1 Australian/New Zealand standards on design of steel structures

AS 4100-1998 Steel structures

C.4.2 Australian/New Zealand standards on steel materials

AS 1163-2007 Structural steel hollow sections (cold-formed)
AS 1397-2001 Steel sheet and strip – Hot-dipped zinc-coated or aluminium/zinc-coated
AS 1548-1995 Steel plate for pressure equipment
AS/NZS 1594-2002 Hot-rolled steel flat products
AS/NZS 1595-1998 Cold-rolled, unalloyed, steel sheet and strip
AS/NZS 1365-1996 Structural steel – hot-rolled plates, floor plates and slabs

C.4.3 Australian/New Zealand standards on manufacturing tolerances

AS/NZS 1365-1996 Tolerances for flat rolled steel products
AS 1548-1995 Steel plate for pressure equipment

C.4.4 Australian/New Zealand standards on bolting assemblies

AS 1112.3-2000 ISO metric hexagon nuts – Part 3: Product grade C
AS 1112.4-2000 ISO metric hexagon nuts – Part 4: Chamfered thin nuts. Product grades A and B
AS 4291.1-2000 Mechanical properties of fasteners made of carbon steel and alloy steel – Bolts, screws and studs
AS/NZS 1252-1996 High strength steel bolts with associated nuts and washers for structural engineering
AS/NZS 1559-1997 Hot-dip galvanized steel bolts with associated nuts and washers for tower construction.
AS/NZS 4291.2-1995 Mechanical properties of fasteners – Nuts with specified proof load values – Coarse thread

C.4.5 Australian/New Zealand standards on welding consumables

AS 1554.1-2004 Structural Steel Welding – Welding of steel structures
AS/NZS 4855-2007 Manual arc weld
AS/NZS 4857-2006 Manual arc weld high strength steel
AS/NZS 1167.2-1999 Welding and brazing – Filler metals
AS/NZS 2717.1-1996 Welding – Electrodes – Gas metal arc
AS 1858.1-2003 Electrodes and fluxes for submerged-arc welding – Carbon steels and carbon-manganese steels
AS 1858.1-2003 Electrodes and fluxes for submerged-arc welding – Carbon steels and carbon-manganese steels

C.4.6 **Australian/New Zealand standards on profiled steel sheets**

AS 1397-2001 Steel sheet and strip – Hot-dipped zinc-coated or aluminium/zinc-coated

C.4.7 **Australian/New Zealand standards on shear stud connectors**

AS/NZS 1554.2-2003 Structural steel welding – Stud welding
C.5 Chinese standards for reference

The following Chinese standards are published by the Standardization Administration of China, Beijing, People’s Republic of China.

C.5.1 Chinese standards on design of steel structures
- GB 50017-2003 Code for design of steel structures
- GB 50018-2002 Technical code of cold-formed thin-wall steel structures
- JGJ 81-2002 Technical specification for welding of steel structure of building
- JGJ 82-1991 Code for design, construction and acceptance of high strength bolt connection of steel structures

C.5.2 Chinese standards on steel materials
- GB/T 700-2006 Carbon structural steels
- GB/T 912-1989 Hot-rolled plain carbon and low alloy structural steel sheets and strips
- GB/T 1591-1994 High strength low alloy structural steels
- GB/T 3274-1988 Carbon structural and low alloy steel rolled plates and strips
- GB/T 4171-2000 Superior atmospheric corrosion resisting structural steel
- GB/T 4172-2000 Atmospheric corrosion resisting steel for welded structures
- GB/T 5313-1985 Steel plate with through-thickness characteristics
- GB/T 8162-1999 Seamless steel tubes for structural purposes
- GB/T 13304-1991 Steels – Classification
- GB/T 15574-1995 Steel products classification and definitions
- YB 4104-2000 Steel plates for high rise building structure

C.5.3 Chinese standards on manufacturing tolerances
- GB/T 706-1988 Hot-rolled beam steel – Dimensions, shape, weight and tolerances
- GB/T 707-1988 Hot-rolled channel steel – Dimensions, shape, weight and tolerances
- GB/T 709-2006 Dimension, shape, weight and tolerances for hot-rolled steel plates and sheets
- GB/T 6728-2002 Cold formed steel hollow sections for general structure – Dimensions, shapes, weight and permissible deviations
- GB/T 9787-1988 Hot-rolled equal-leg angle steel – Dimensions, shape, weight and tolerances
- GB/T 9946-1988 Dimensions, shape, weight and tolerances for hot-rolled L-sectional steel
- GB/T 11263-2005 The hot-rolled H and cut T section
- GBT 17395-1998 Dimensions, shapes, masses and tolerances of seamless steel tubes

C.5.4 Chinese standards on bolting assemblies

General information
- GB/T 3098.1-2000 Mechanical properties of fasteners – Bolts, screws and studs
- GB/T 3098.2-2000 Mechanical properties of fasteners – Nuts – Coarse thread

Materials
- GB/T 699-1999 Quality carbon structural steels
GB/T 3077-1999 Alloy structure steels
GB/T 6478-2001 Steels for cold heading and cold extruding

Non-preloaded assemblies
GB/T 41-2000 Hexagon nuts – Product grade C
GB/T 95-2002 Plain washers – Product grade C
GB/T 5780-2000 Hexagon head bolts – Product grade C
GB/T 5781-2000 Hexagon head bolts – Full thread – Product grade C
GB/T 5782-2000 Hexagon head bolts
GB/T 5783-2000 Hexagon head bolts – Full thread
GB/T 6170-2000 Hexagon nuts, style 1
GB/T 6175-2000 Hexagon nuts, style 2

Preloaded assemblies
GB/T 1228-2006 High strength bolts with large hexagon head for steel structures
GB/T 1229-2006 High strength large hexagon nuts for steel structures
GB/T 1230-2006 High strength plain washers for steel structures
GB/T 1231-2006 Specifications of high strength bolts with large hexagon nuts, plain washers for steel structures
GB/T 3632-1995 Sets of torshear type high strength bolt hexagon nut and plain washer for steel structures
GB/T 3633-1995 Technical requirement for sets of torshear type high strength bolt hexagon nut and plain washer for steel structures

C.5.5 Chinese standards on welding consumables
GB/T 3429-2002 Wire rod for electrode
GB/T 5117-1995 Carbon steel covered electrodes
GB/T 5118-1995 Low alloy steel covered electrodes
GB/T 5293-1999 Carbon steel electrodes and fluxes for submerged arc welding
GB/T 8110-1995 Welding wires for gas shielding arc welding of carbon and low alloy steels
GB/T 10045-2001 Carbon steel flux cored electrodes for arc welding
GB/T 12470-2003 Low alloy steel electrodes and fluxes for submerged arc welding
GB/T 14957-1994 Steel wires for melt welding
GB/T 14981-2004 Dimensions, shape, mass and tolerances for hot-rolled wire rods
GB/T 17493-1998 Low alloy steel flux cored electrodes for arc welding

C.5.6 Chinese standards on profiled steel sheets
GB/T 2518-2004 Continuous hot-dip zinc-coated steel sheets and strips
GB/T 12755-1991 Roll-profiled steel sheet for building

C.5.7 Chinese standards on stud shear connectors
GB/T 10433-2002 Cheese head studs for arc stud welding